Junyi Xin, Muhammad Faheem, Qasim Umer, Muhammad Tausif, M. Waqar Ashraf
{"title":"基于集成学习的激光烧结缺陷检测","authors":"Junyi Xin, Muhammad Faheem, Qasim Umer, Muhammad Tausif, M. Waqar Ashraf","doi":"10.1049/ote2.12108","DOIUrl":null,"url":null,"abstract":"<p>In rapid development, Selective Laser Sintering (SLS) creates prototypes by processing industrial materials, for example, polymers. Such materials are usually in powder form and fused by a laser beam. The manufacturing quality depends on the interaction between a high-energy laser beam and the powdered material. However, in-homogeneous temperature distribution, unstable laser powder, and inconsistent powder densities can cause defects in the final product, for example, Powder Bed Defects. Such factors can lead to irregularities, for example, warping, distortion, and inadequate powder bed fusion. These irregularities may affect the profitable SLS production. Consequently, detecting powder bed defects requires automation. An ensemble learning-based approach is proposed for detecting defects in SLS powder bed images from this perceptive. The proposed approach first pre-processes the images to reduce the computational complexity. Then, the Convolutional Neural Network (CNN) based ensembled models (off-the-shelf CNN, bagged CNN, and boosted CNN) are implemented and compared. The ensemble learning CNN (bagged and boosted CNN) is good for powder bed detection. The evaluation results indicate that the performance of bagged CNN is significant. It also indicates that preprocessing of the images, mainly cropping to the region of interest, improves the performance of the proposed approach. The training and testing accuracy of the bagged CNN is 96.1% and 95.1%, respectively.</p>","PeriodicalId":13408,"journal":{"name":"Iet Optoelectronics","volume":"17 6","pages":"273-283"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ote2.12108","citationCount":"0","resultStr":"{\"title\":\"Ensemble learning based defect detection of laser sintering\",\"authors\":\"Junyi Xin, Muhammad Faheem, Qasim Umer, Muhammad Tausif, M. Waqar Ashraf\",\"doi\":\"10.1049/ote2.12108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In rapid development, Selective Laser Sintering (SLS) creates prototypes by processing industrial materials, for example, polymers. Such materials are usually in powder form and fused by a laser beam. The manufacturing quality depends on the interaction between a high-energy laser beam and the powdered material. However, in-homogeneous temperature distribution, unstable laser powder, and inconsistent powder densities can cause defects in the final product, for example, Powder Bed Defects. Such factors can lead to irregularities, for example, warping, distortion, and inadequate powder bed fusion. These irregularities may affect the profitable SLS production. Consequently, detecting powder bed defects requires automation. An ensemble learning-based approach is proposed for detecting defects in SLS powder bed images from this perceptive. The proposed approach first pre-processes the images to reduce the computational complexity. Then, the Convolutional Neural Network (CNN) based ensembled models (off-the-shelf CNN, bagged CNN, and boosted CNN) are implemented and compared. The ensemble learning CNN (bagged and boosted CNN) is good for powder bed detection. The evaluation results indicate that the performance of bagged CNN is significant. It also indicates that preprocessing of the images, mainly cropping to the region of interest, improves the performance of the proposed approach. The training and testing accuracy of the bagged CNN is 96.1% and 95.1%, respectively.</p>\",\"PeriodicalId\":13408,\"journal\":{\"name\":\"Iet Optoelectronics\",\"volume\":\"17 6\",\"pages\":\"273-283\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ote2.12108\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Optoelectronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/ote2.12108\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Optoelectronics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ote2.12108","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Ensemble learning based defect detection of laser sintering
In rapid development, Selective Laser Sintering (SLS) creates prototypes by processing industrial materials, for example, polymers. Such materials are usually in powder form and fused by a laser beam. The manufacturing quality depends on the interaction between a high-energy laser beam and the powdered material. However, in-homogeneous temperature distribution, unstable laser powder, and inconsistent powder densities can cause defects in the final product, for example, Powder Bed Defects. Such factors can lead to irregularities, for example, warping, distortion, and inadequate powder bed fusion. These irregularities may affect the profitable SLS production. Consequently, detecting powder bed defects requires automation. An ensemble learning-based approach is proposed for detecting defects in SLS powder bed images from this perceptive. The proposed approach first pre-processes the images to reduce the computational complexity. Then, the Convolutional Neural Network (CNN) based ensembled models (off-the-shelf CNN, bagged CNN, and boosted CNN) are implemented and compared. The ensemble learning CNN (bagged and boosted CNN) is good for powder bed detection. The evaluation results indicate that the performance of bagged CNN is significant. It also indicates that preprocessing of the images, mainly cropping to the region of interest, improves the performance of the proposed approach. The training and testing accuracy of the bagged CNN is 96.1% and 95.1%, respectively.
期刊介绍:
IET Optoelectronics publishes state of the art research papers in the field of optoelectronics and photonics. The topics that are covered by the journal include optical and optoelectronic materials, nanophotonics, metamaterials and photonic crystals, light sources (e.g. LEDs, lasers and devices for lighting), optical modulation and multiplexing, optical fibres, cables and connectors, optical amplifiers, photodetectors and optical receivers, photonic integrated circuits, photonic systems, optical signal processing and holography and displays.
Most of the papers published describe original research from universities and industrial and government laboratories. However correspondence suggesting review papers and tutorials is welcomed, as are suggestions for special issues.
IET Optoelectronics covers but is not limited to the following topics:
Optical and optoelectronic materials
Light sources, including LEDs, lasers and devices for lighting
Optical modulation and multiplexing
Optical fibres, cables and connectors
Optical amplifiers
Photodetectors and optical receivers
Photonic integrated circuits
Nanophotonics and photonic crystals
Optical signal processing
Holography
Displays