Nannan Li, Qi Zou, Yizhi Lan, Yaqi Wang, Jun Zhang, Michael Somekh, Changjun Min, Fu Feng, and Xiaocong Yuan
{"title":"Bloch表面波结构对轨道角动量束的片上分选","authors":"Nannan Li, Qi Zou, Yizhi Lan, Yaqi Wang, Jun Zhang, Michael Somekh, Changjun Min, Fu Feng, and Xiaocong Yuan","doi":"10.1364/prj.502760","DOIUrl":null,"url":null,"abstract":"Owing to their unique optical properties and new degrees of freedom, orbital angular momentum (OAM) beams have been applied in various fields. Detection of the topological charges (TCs) of OAM beams is the key step for their applications. However, on-chip sorting of OAM beams with large TCs still remains a challenge. In this paper, Bloch surface wave (BSW) structures with five semi-ring shaped nanoslits are modeled. A spatial separation of 135 nm on the chip is obtained between two neighboring OAM states. OAM beams with TCs up to 35 can be successfully sorted by the BSW structures, which is much larger than that using metallic structures (only seven). BSW structures exhibit better OAM sorting performances than metallic structures. We systematically show how the lower attenuation of BSW structures leads to far superior separation ability compared to surface plasmons propagating on metallic structures. In addition, sorting of two OAM beams with different TCs simultaneously can be achieved in this way. Our results reveal that BSW structures should be an excellent solution for OAM sorting with large TCs, which is beneficial for applications in integrated on-chip devices and optical communications.","PeriodicalId":20048,"journal":{"name":"Photonics Research","volume":"23 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On-chip sorting of orbital angular momentum beams using Bloch surface wave structures\",\"authors\":\"Nannan Li, Qi Zou, Yizhi Lan, Yaqi Wang, Jun Zhang, Michael Somekh, Changjun Min, Fu Feng, and Xiaocong Yuan\",\"doi\":\"10.1364/prj.502760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Owing to their unique optical properties and new degrees of freedom, orbital angular momentum (OAM) beams have been applied in various fields. Detection of the topological charges (TCs) of OAM beams is the key step for their applications. However, on-chip sorting of OAM beams with large TCs still remains a challenge. In this paper, Bloch surface wave (BSW) structures with five semi-ring shaped nanoslits are modeled. A spatial separation of 135 nm on the chip is obtained between two neighboring OAM states. OAM beams with TCs up to 35 can be successfully sorted by the BSW structures, which is much larger than that using metallic structures (only seven). BSW structures exhibit better OAM sorting performances than metallic structures. We systematically show how the lower attenuation of BSW structures leads to far superior separation ability compared to surface plasmons propagating on metallic structures. In addition, sorting of two OAM beams with different TCs simultaneously can be achieved in this way. Our results reveal that BSW structures should be an excellent solution for OAM sorting with large TCs, which is beneficial for applications in integrated on-chip devices and optical communications.\",\"PeriodicalId\":20048,\"journal\":{\"name\":\"Photonics Research\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/prj.502760\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/prj.502760","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
On-chip sorting of orbital angular momentum beams using Bloch surface wave structures
Owing to their unique optical properties and new degrees of freedom, orbital angular momentum (OAM) beams have been applied in various fields. Detection of the topological charges (TCs) of OAM beams is the key step for their applications. However, on-chip sorting of OAM beams with large TCs still remains a challenge. In this paper, Bloch surface wave (BSW) structures with five semi-ring shaped nanoslits are modeled. A spatial separation of 135 nm on the chip is obtained between two neighboring OAM states. OAM beams with TCs up to 35 can be successfully sorted by the BSW structures, which is much larger than that using metallic structures (only seven). BSW structures exhibit better OAM sorting performances than metallic structures. We systematically show how the lower attenuation of BSW structures leads to far superior separation ability compared to surface plasmons propagating on metallic structures. In addition, sorting of two OAM beams with different TCs simultaneously can be achieved in this way. Our results reveal that BSW structures should be an excellent solution for OAM sorting with large TCs, which is beneficial for applications in integrated on-chip devices and optical communications.
期刊介绍:
Photonics Research is a joint publishing effort of the OSA and Chinese Laser Press.It publishes fundamental and applied research progress in optics and photonics. Topics include, but are not limited to, lasers, LEDs and other light sources; fiber optics and optical communications; imaging, detectors and sensors; novel materials and engineered structures; optical data storage and displays; plasmonics; quantum optics; diffractive optics and guided optics; medical optics and biophotonics; ultraviolet and x-rays; terahertz technology.