Tara Abrishami , Maria Chudnovsky , Cemil Dibek , Sepehr Hajebi , Paweł Rzążewski , Sophie Spirkl , Kristina Vušković
{"title":"诱导子图与树分解Ⅱ。有界度图中的向墙及其线图","authors":"Tara Abrishami , Maria Chudnovsky , Cemil Dibek , Sepehr Hajebi , Paweł Rzążewski , Sophie Spirkl , Kristina Vušković","doi":"10.1016/j.jctb.2023.10.005","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>This paper is motivated by the following question: what are the unavoidable induced subgraphs of graphs with large treewidth? Aboulker et al. made a conjecture which answers this question in graphs of bounded </span>maximum degree, asserting that for all </span><em>k</em> and Δ, every graph with maximum degree at most Δ and sufficiently large treewidth contains either a subdivision of the <span><math><mo>(</mo><mi>k</mi><mo>×</mo><mi>k</mi><mo>)</mo></math></span>-wall or the line graph of a subdivision of the <span><math><mo>(</mo><mi>k</mi><mo>×</mo><mi>k</mi><mo>)</mo></math></span>-wall as an induced subgraph. We prove two theorems supporting this conjecture, as follows.</p><ul><li><span>1.</span><span><p>For <span><math><mi>t</mi><mo>≥</mo><mn>2</mn></math></span>, a <em>t-theta</em> is a graph consisting of two nonadjacent vertices and three internally vertex-disjoint paths between them, each of length at least <em>t</em>. A <em>t-pyramid</em> is a graph consisting of a vertex <em>v</em>, a triangle <em>B</em> disjoint from <em>v</em> and three paths starting at <em>v</em> and vertex-disjoint otherwise, each joining <em>v</em> to a vertex of <em>B</em>, and each of length at least <em>t</em>. We prove that for all <span><math><mi>k</mi><mo>,</mo><mi>t</mi></math></span> and Δ, every graph with maximum degree at most Δ and sufficiently large treewidth contains either a <em>t</em>-theta, or a <em>t</em>-pyramid, or the line graph of a subdivision of the <span><math><mo>(</mo><mi>k</mi><mo>×</mo><mi>k</mi><mo>)</mo></math></span>-wall as an induced subgraph. This affirmatively answers a question of Pilipczuk et al. asking whether every graph of bounded maximum degree and sufficiently large treewidth contains either a theta or a triangle as an induced subgraph (where a <em>theta</em> means a <em>t</em>-theta for some <span><math><mi>t</mi><mo>≥</mo><mn>2</mn></math></span>).</p></span></li><li><span>2.</span><span><p>A <em>subcubic subdivided caterpillar</em> is a tree of maximum degree at most three whose all vertices of degree three lie on a path. We prove that for every Δ and subcubic subdivided caterpillar <em>T</em>, every graph with maximum degree at most Δ and sufficiently large treewidth contains either a subdivision of <em>T</em> or the line graph of a subdivision of <em>T</em> as an induced subgraph.</p></span></li></ul></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"164 ","pages":"Pages 371-403"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Induced subgraphs and tree decompositions II. Toward walls and their line graphs in graphs of bounded degree\",\"authors\":\"Tara Abrishami , Maria Chudnovsky , Cemil Dibek , Sepehr Hajebi , Paweł Rzążewski , Sophie Spirkl , Kristina Vušković\",\"doi\":\"10.1016/j.jctb.2023.10.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>This paper is motivated by the following question: what are the unavoidable induced subgraphs of graphs with large treewidth? Aboulker et al. made a conjecture which answers this question in graphs of bounded </span>maximum degree, asserting that for all </span><em>k</em> and Δ, every graph with maximum degree at most Δ and sufficiently large treewidth contains either a subdivision of the <span><math><mo>(</mo><mi>k</mi><mo>×</mo><mi>k</mi><mo>)</mo></math></span>-wall or the line graph of a subdivision of the <span><math><mo>(</mo><mi>k</mi><mo>×</mo><mi>k</mi><mo>)</mo></math></span>-wall as an induced subgraph. We prove two theorems supporting this conjecture, as follows.</p><ul><li><span>1.</span><span><p>For <span><math><mi>t</mi><mo>≥</mo><mn>2</mn></math></span>, a <em>t-theta</em> is a graph consisting of two nonadjacent vertices and three internally vertex-disjoint paths between them, each of length at least <em>t</em>. A <em>t-pyramid</em> is a graph consisting of a vertex <em>v</em>, a triangle <em>B</em> disjoint from <em>v</em> and three paths starting at <em>v</em> and vertex-disjoint otherwise, each joining <em>v</em> to a vertex of <em>B</em>, and each of length at least <em>t</em>. We prove that for all <span><math><mi>k</mi><mo>,</mo><mi>t</mi></math></span> and Δ, every graph with maximum degree at most Δ and sufficiently large treewidth contains either a <em>t</em>-theta, or a <em>t</em>-pyramid, or the line graph of a subdivision of the <span><math><mo>(</mo><mi>k</mi><mo>×</mo><mi>k</mi><mo>)</mo></math></span>-wall as an induced subgraph. This affirmatively answers a question of Pilipczuk et al. asking whether every graph of bounded maximum degree and sufficiently large treewidth contains either a theta or a triangle as an induced subgraph (where a <em>theta</em> means a <em>t</em>-theta for some <span><math><mi>t</mi><mo>≥</mo><mn>2</mn></math></span>).</p></span></li><li><span>2.</span><span><p>A <em>subcubic subdivided caterpillar</em> is a tree of maximum degree at most three whose all vertices of degree three lie on a path. We prove that for every Δ and subcubic subdivided caterpillar <em>T</em>, every graph with maximum degree at most Δ and sufficiently large treewidth contains either a subdivision of <em>T</em> or the line graph of a subdivision of <em>T</em> as an induced subgraph.</p></span></li></ul></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"164 \",\"pages\":\"Pages 371-403\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895623000862\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895623000862","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Induced subgraphs and tree decompositions II. Toward walls and their line graphs in graphs of bounded degree
This paper is motivated by the following question: what are the unavoidable induced subgraphs of graphs with large treewidth? Aboulker et al. made a conjecture which answers this question in graphs of bounded maximum degree, asserting that for all k and Δ, every graph with maximum degree at most Δ and sufficiently large treewidth contains either a subdivision of the -wall or the line graph of a subdivision of the -wall as an induced subgraph. We prove two theorems supporting this conjecture, as follows.
1.
For , a t-theta is a graph consisting of two nonadjacent vertices and three internally vertex-disjoint paths between them, each of length at least t. A t-pyramid is a graph consisting of a vertex v, a triangle B disjoint from v and three paths starting at v and vertex-disjoint otherwise, each joining v to a vertex of B, and each of length at least t. We prove that for all and Δ, every graph with maximum degree at most Δ and sufficiently large treewidth contains either a t-theta, or a t-pyramid, or the line graph of a subdivision of the -wall as an induced subgraph. This affirmatively answers a question of Pilipczuk et al. asking whether every graph of bounded maximum degree and sufficiently large treewidth contains either a theta or a triangle as an induced subgraph (where a theta means a t-theta for some ).
2.
A subcubic subdivided caterpillar is a tree of maximum degree at most three whose all vertices of degree three lie on a path. We prove that for every Δ and subcubic subdivided caterpillar T, every graph with maximum degree at most Δ and sufficiently large treewidth contains either a subdivision of T or the line graph of a subdivision of T as an induced subgraph.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.