Nicolas Crampé , Luc Vinet , Meri Zaimi , Xiaohong Zhang
{"title":"非二元Johnson格式的二元Q多项式结构","authors":"Nicolas Crampé , Luc Vinet , Meri Zaimi , Xiaohong Zhang","doi":"10.1016/j.jcta.2023.105829","DOIUrl":null,"url":null,"abstract":"<div><p>The notion of multivariate <em>P</em>- and <em>Q</em><span>-polynomial association scheme has been introduced recently, generalizing the well-known univariate case<span>. Numerous examples of such association schemes have already been exhibited. In particular, it has been demonstrated that the non-binary Johnson scheme is a bivariate </span></span><em>P</em>-polynomial association scheme. We show here that it is also a bivariate <em>Q</em>-polynomial association scheme for some parameters. This provides, with the <em>P</em>-polynomial structure, the bispectral property (<em>i.e.</em><span> the recurrence and difference relations) of a family of bivariate orthogonal polynomials made out of univariate Krawtchouk and dual Hahn polynomials. The algebra based on the bispectral operators is also studied together with the subconstituent algebra of this association scheme.</span></p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"202 ","pages":"Article 105829"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A bivariate Q-polynomial structure for the non-binary Johnson scheme\",\"authors\":\"Nicolas Crampé , Luc Vinet , Meri Zaimi , Xiaohong Zhang\",\"doi\":\"10.1016/j.jcta.2023.105829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The notion of multivariate <em>P</em>- and <em>Q</em><span>-polynomial association scheme has been introduced recently, generalizing the well-known univariate case<span>. Numerous examples of such association schemes have already been exhibited. In particular, it has been demonstrated that the non-binary Johnson scheme is a bivariate </span></span><em>P</em>-polynomial association scheme. We show here that it is also a bivariate <em>Q</em>-polynomial association scheme for some parameters. This provides, with the <em>P</em>-polynomial structure, the bispectral property (<em>i.e.</em><span> the recurrence and difference relations) of a family of bivariate orthogonal polynomials made out of univariate Krawtchouk and dual Hahn polynomials. The algebra based on the bispectral operators is also studied together with the subconstituent algebra of this association scheme.</span></p></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"202 \",\"pages\":\"Article 105829\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316523000973\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316523000973","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A bivariate Q-polynomial structure for the non-binary Johnson scheme
The notion of multivariate P- and Q-polynomial association scheme has been introduced recently, generalizing the well-known univariate case. Numerous examples of such association schemes have already been exhibited. In particular, it has been demonstrated that the non-binary Johnson scheme is a bivariate P-polynomial association scheme. We show here that it is also a bivariate Q-polynomial association scheme for some parameters. This provides, with the P-polynomial structure, the bispectral property (i.e. the recurrence and difference relations) of a family of bivariate orthogonal polynomials made out of univariate Krawtchouk and dual Hahn polynomials. The algebra based on the bispectral operators is also studied together with the subconstituent algebra of this association scheme.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.