{"title":"论和超越成像中的全变分正则化:空间方差的作用","authors":"Monica Pragliola, Luca Calatroni, Alessandro Lanza, Fiorella Sgallari","doi":"10.1137/21m1410683","DOIUrl":null,"url":null,"abstract":"SIAM Review, Volume 65, Issue 3, Page 601-685, August 2023. <br/> Over the last 30 years a plethora of variational regularization models for image reconstruction have been proposed and thoroughly inspected by the applied mathematics community. Among them, the pioneering prototype often taught and learned in basic courses in mathematical image processing is the celebrated Rudin--Osher--Fatemi (ROF) model [L. I. Rudin, S. Osher, and E. Fatemi, Phys. D, 60 (1992), pp. 259--268], which relies on the minimization of the edge-preserving total variation (TV) seminorm as a regularization term. Despite its (often limiting) simplicity, this model is still very much employed in many applications and used as a benchmark for assessing the performance of modern learning-based image reconstruction approaches, thanks to its thorough analytical and numerical understanding. Among the many extensions to TV proposed over the years, a large class is based on the concept of space variance. Space-variant models can indeed overcome the intrinsic inability of TV to describe local features (strength, sharpness, directionality) by means of an adaptive mathematical modeling which accommodates local regularization weighting, variable smoothness, and anisotropy. Those ideas can further be cast in the flexible Bayesian framework of generalized Gaussian distributions and combined with maximum likelihood and hierarchical optimization approaches for efficient hyperparameter estimation. In this work, we review and connect the major contributions in the field of space-variant TV-type image reconstruction models, focusing, in particular, on their Bayesian interpretation which paves the way to new exciting and unexplored research directions.","PeriodicalId":49525,"journal":{"name":"SIAM Review","volume":"32 5","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On and Beyond Total Variation Regularization in Imaging: The Role of Space Variance\",\"authors\":\"Monica Pragliola, Luca Calatroni, Alessandro Lanza, Fiorella Sgallari\",\"doi\":\"10.1137/21m1410683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Review, Volume 65, Issue 3, Page 601-685, August 2023. <br/> Over the last 30 years a plethora of variational regularization models for image reconstruction have been proposed and thoroughly inspected by the applied mathematics community. Among them, the pioneering prototype often taught and learned in basic courses in mathematical image processing is the celebrated Rudin--Osher--Fatemi (ROF) model [L. I. Rudin, S. Osher, and E. Fatemi, Phys. D, 60 (1992), pp. 259--268], which relies on the minimization of the edge-preserving total variation (TV) seminorm as a regularization term. Despite its (often limiting) simplicity, this model is still very much employed in many applications and used as a benchmark for assessing the performance of modern learning-based image reconstruction approaches, thanks to its thorough analytical and numerical understanding. Among the many extensions to TV proposed over the years, a large class is based on the concept of space variance. Space-variant models can indeed overcome the intrinsic inability of TV to describe local features (strength, sharpness, directionality) by means of an adaptive mathematical modeling which accommodates local regularization weighting, variable smoothness, and anisotropy. Those ideas can further be cast in the flexible Bayesian framework of generalized Gaussian distributions and combined with maximum likelihood and hierarchical optimization approaches for efficient hyperparameter estimation. In this work, we review and connect the major contributions in the field of space-variant TV-type image reconstruction models, focusing, in particular, on their Bayesian interpretation which paves the way to new exciting and unexplored research directions.\",\"PeriodicalId\":49525,\"journal\":{\"name\":\"SIAM Review\",\"volume\":\"32 5\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Review\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/21m1410683\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Review","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/21m1410683","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
On and Beyond Total Variation Regularization in Imaging: The Role of Space Variance
SIAM Review, Volume 65, Issue 3, Page 601-685, August 2023. Over the last 30 years a plethora of variational regularization models for image reconstruction have been proposed and thoroughly inspected by the applied mathematics community. Among them, the pioneering prototype often taught and learned in basic courses in mathematical image processing is the celebrated Rudin--Osher--Fatemi (ROF) model [L. I. Rudin, S. Osher, and E. Fatemi, Phys. D, 60 (1992), pp. 259--268], which relies on the minimization of the edge-preserving total variation (TV) seminorm as a regularization term. Despite its (often limiting) simplicity, this model is still very much employed in many applications and used as a benchmark for assessing the performance of modern learning-based image reconstruction approaches, thanks to its thorough analytical and numerical understanding. Among the many extensions to TV proposed over the years, a large class is based on the concept of space variance. Space-variant models can indeed overcome the intrinsic inability of TV to describe local features (strength, sharpness, directionality) by means of an adaptive mathematical modeling which accommodates local regularization weighting, variable smoothness, and anisotropy. Those ideas can further be cast in the flexible Bayesian framework of generalized Gaussian distributions and combined with maximum likelihood and hierarchical optimization approaches for efficient hyperparameter estimation. In this work, we review and connect the major contributions in the field of space-variant TV-type image reconstruction models, focusing, in particular, on their Bayesian interpretation which paves the way to new exciting and unexplored research directions.
期刊介绍:
Survey and Review feature papers that provide an integrative and current viewpoint on important topics in applied or computational mathematics and scientific computing. These papers aim to offer a comprehensive perspective on the subject matter.
Research Spotlights publish concise research papers in applied and computational mathematics that are of interest to a wide range of readers in SIAM Review. The papers in this section present innovative ideas that are clearly explained and motivated. They stand out from regular publications in specific SIAM journals due to their accessibility and potential for widespread and long-lasting influence.