Huize Shen , Rui Zhu , Yanyang Liu , Yangjian Hong , Jiaming Ge , Jie Xuan , Wenyuan Niu , Xuefei Yu , Jiang-Jiang Qin , Qinglin Li
{"title":"放射性碘难治性甲状腺癌症:放射性碘耐药性的分子机制和治疗策略","authors":"Huize Shen , Rui Zhu , Yanyang Liu , Yangjian Hong , Jiaming Ge , Jie Xuan , Wenyuan Niu , Xuefei Yu , Jiang-Jiang Qin , Qinglin Li","doi":"10.1016/j.drup.2023.101013","DOIUrl":null,"url":null,"abstract":"<div><p>Radioiodine-refractory differentiated thyroid cancer (RAIR-DTC) is difficult to treat with radioactive iodine because of the absence of the sodium iodide transporter in the basement membrane of thyroid follicular cells for iodine uptake. This is usually due to the mutation or rearrangement of genes and the aberrant activation of signal pathways, which result in abnormal expression of thyroid-specific genes, leading to resistance of differentiated thyroid cancer cells to radioiodine therapy. Therefore, inhibiting the proliferation and growth of RAIR-DTC with multikinase inhibitors and other drugs or restoring its differentiation and then carrying out radioiodine therapy have become the first-line treatment strategies and main research directions. The drugs that regulate these kinases or signaling pathways have been studied in clinical and preclinical settings. In this review, we summarized the major gene mutations, gene rearrangements and abnormal activation of signaling pathways that led to radioiodine resistance of RAIR-DTC, as well as the medicine that have been tested in clinical and preclinical trials.</p></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2023-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1368764623000961/pdfft?md5=ea36196d0d2fa25a8ef3b2b8f13f4d5a&pid=1-s2.0-S1368764623000961-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Radioiodine-refractory differentiated thyroid cancer: Molecular mechanisms and therapeutic strategies for radioiodine resistance\",\"authors\":\"Huize Shen , Rui Zhu , Yanyang Liu , Yangjian Hong , Jiaming Ge , Jie Xuan , Wenyuan Niu , Xuefei Yu , Jiang-Jiang Qin , Qinglin Li\",\"doi\":\"10.1016/j.drup.2023.101013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Radioiodine-refractory differentiated thyroid cancer (RAIR-DTC) is difficult to treat with radioactive iodine because of the absence of the sodium iodide transporter in the basement membrane of thyroid follicular cells for iodine uptake. This is usually due to the mutation or rearrangement of genes and the aberrant activation of signal pathways, which result in abnormal expression of thyroid-specific genes, leading to resistance of differentiated thyroid cancer cells to radioiodine therapy. Therefore, inhibiting the proliferation and growth of RAIR-DTC with multikinase inhibitors and other drugs or restoring its differentiation and then carrying out radioiodine therapy have become the first-line treatment strategies and main research directions. The drugs that regulate these kinases or signaling pathways have been studied in clinical and preclinical settings. In this review, we summarized the major gene mutations, gene rearrangements and abnormal activation of signaling pathways that led to radioiodine resistance of RAIR-DTC, as well as the medicine that have been tested in clinical and preclinical trials.</p></div>\",\"PeriodicalId\":51022,\"journal\":{\"name\":\"Drug Resistance Updates\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2023-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1368764623000961/pdfft?md5=ea36196d0d2fa25a8ef3b2b8f13f4d5a&pid=1-s2.0-S1368764623000961-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Resistance Updates\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1368764623000961\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Resistance Updates","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1368764623000961","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Radioiodine-refractory differentiated thyroid cancer: Molecular mechanisms and therapeutic strategies for radioiodine resistance
Radioiodine-refractory differentiated thyroid cancer (RAIR-DTC) is difficult to treat with radioactive iodine because of the absence of the sodium iodide transporter in the basement membrane of thyroid follicular cells for iodine uptake. This is usually due to the mutation or rearrangement of genes and the aberrant activation of signal pathways, which result in abnormal expression of thyroid-specific genes, leading to resistance of differentiated thyroid cancer cells to radioiodine therapy. Therefore, inhibiting the proliferation and growth of RAIR-DTC with multikinase inhibitors and other drugs or restoring its differentiation and then carrying out radioiodine therapy have become the first-line treatment strategies and main research directions. The drugs that regulate these kinases or signaling pathways have been studied in clinical and preclinical settings. In this review, we summarized the major gene mutations, gene rearrangements and abnormal activation of signaling pathways that led to radioiodine resistance of RAIR-DTC, as well as the medicine that have been tested in clinical and preclinical trials.
期刊介绍:
Drug Resistance Updates serves as a platform for publishing original research, commentary, and expert reviews on significant advancements in drug resistance related to infectious diseases and cancer. It encompasses diverse disciplines such as molecular biology, biochemistry, cell biology, pharmacology, microbiology, preclinical therapeutics, oncology, and clinical medicine. The journal addresses both basic research and clinical aspects of drug resistance, providing insights into novel drugs and strategies to overcome resistance. Original research articles are welcomed, and review articles are authored by leaders in the field by invitation.
Articles are written by leaders in the field, in response to an invitation from the Editors, and are peer-reviewed prior to publication. Articles are clear, readable, and up-to-date, suitable for a multidisciplinary readership and include schematic diagrams and other illustrations conveying the major points of the article. The goal is to highlight recent areas of growth and put them in perspective.
*Expert reviews in clinical and basic drug resistance research in oncology and infectious disease
*Describes emerging technologies and therapies, particularly those that overcome drug resistance
*Emphasises common themes in microbial and cancer research