镓异常

IF 14.5 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR
S.R. Elliott , V.N. Gavrin , W.C. Haxton
{"title":"镓异常","authors":"S.R. Elliott ,&nbsp;V.N. Gavrin ,&nbsp;W.C. Haxton","doi":"10.1016/j.ppnp.2023.104082","DOIUrl":null,"url":null,"abstract":"<div><p>In order to test the end-to-end operations of gallium solar neutrino experiments, intense electron-capture sources were fabricated to measure the responses of the radiochemical SAGE and GALLEX/GNO detectors to known fluxes of low-energy neutrinos. Such tests were viewed at the time as a cross-check, given the many tests of <sup>71</sup>Ge recovery and counting that had been routinely performed, with excellent results. However, the four <sup>51</sup>Cr and <sup>37</sup>Ar source experiments yielded rates below expectations, a result commonly known as the Ga anomaly. As the intensity of the electron-capture sources can be measured to high precision, the neutrino lines they produce are fixed by known atomic and nuclear rates, and the neutrino absorption cross section on <sup>71</sup>Ga is tightly constrained by the lifetime of <sup>71</sup>Ge, no simple explanation for the anomaly has been found. To check these calibration experiments, a dedicated experiment BEST was performed, utilizing a neutrino source of unprecedented intensity and a detector optimized to increase statistics while providing some information on counting rate as a function of distance from the source. The results BEST obtained are consistent with the earlier solar neutrino calibration experiments, and when combined with those measurements, yield a Ga anomaly with a significance of approximately 4<span><math><mi>σ</mi></math></span>, under conservative assumptions. But BEST found no evidence of distance dependence and thus no explicit indication of new physics. In this review we describe the extensive campaigns carried out by SAGE, GALLEX/GNO, and BEST to demonstrate the reliability and precision of their experimental procedures, including <sup>71</sup>Ge recovery, counting, and analysis. We also describe efforts to define uncertainties in the neutrino capture cross section, which now include estimates of effects at the <span><math><mrow><mo>≲</mo><mn>0</mn><mo>.</mo><mn>5</mn></mrow></math></span>% level such as radiative corrections and weak magnetism. With the results from BEST, an anomaly remains even if one retains only the transition to the <sup>71</sup>Ge ground state, whose strength is fixed by the known lifetime of <sup>71</sup>Ge. We then consider the new-physics solution most commonly suggested to resolve the Ga anomaly, oscillations into a sterile fourth neutrino, <span><math><mrow><msub><mrow><mi>ν</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>→</mo><msub><mrow><mi>ν</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow></math></span>. We find such a solution generates substantial tension with several null experiments, owing to the large mixing angle required. While this does not exclude such solutions – the sterile sector might include multiple neutrinos as well as new interactions – it shows the need for more experimental constraints, if we are to make progress in resolving the Ga and other low-energy neutrino anomalies. We conclude by consider the role future low-energy electron-capture sources could play in this effort.</p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":null,"pages":null},"PeriodicalIF":14.5000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0146641023000637/pdfft?md5=6095ff5f92e1bbbd29a5ca4f20f766c0&pid=1-s2.0-S0146641023000637-main.pdf","citationCount":"1","resultStr":"{\"title\":\"The gallium anomaly\",\"authors\":\"S.R. Elliott ,&nbsp;V.N. Gavrin ,&nbsp;W.C. Haxton\",\"doi\":\"10.1016/j.ppnp.2023.104082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In order to test the end-to-end operations of gallium solar neutrino experiments, intense electron-capture sources were fabricated to measure the responses of the radiochemical SAGE and GALLEX/GNO detectors to known fluxes of low-energy neutrinos. Such tests were viewed at the time as a cross-check, given the many tests of <sup>71</sup>Ge recovery and counting that had been routinely performed, with excellent results. However, the four <sup>51</sup>Cr and <sup>37</sup>Ar source experiments yielded rates below expectations, a result commonly known as the Ga anomaly. As the intensity of the electron-capture sources can be measured to high precision, the neutrino lines they produce are fixed by known atomic and nuclear rates, and the neutrino absorption cross section on <sup>71</sup>Ga is tightly constrained by the lifetime of <sup>71</sup>Ge, no simple explanation for the anomaly has been found. To check these calibration experiments, a dedicated experiment BEST was performed, utilizing a neutrino source of unprecedented intensity and a detector optimized to increase statistics while providing some information on counting rate as a function of distance from the source. The results BEST obtained are consistent with the earlier solar neutrino calibration experiments, and when combined with those measurements, yield a Ga anomaly with a significance of approximately 4<span><math><mi>σ</mi></math></span>, under conservative assumptions. But BEST found no evidence of distance dependence and thus no explicit indication of new physics. In this review we describe the extensive campaigns carried out by SAGE, GALLEX/GNO, and BEST to demonstrate the reliability and precision of their experimental procedures, including <sup>71</sup>Ge recovery, counting, and analysis. We also describe efforts to define uncertainties in the neutrino capture cross section, which now include estimates of effects at the <span><math><mrow><mo>≲</mo><mn>0</mn><mo>.</mo><mn>5</mn></mrow></math></span>% level such as radiative corrections and weak magnetism. With the results from BEST, an anomaly remains even if one retains only the transition to the <sup>71</sup>Ge ground state, whose strength is fixed by the known lifetime of <sup>71</sup>Ge. We then consider the new-physics solution most commonly suggested to resolve the Ga anomaly, oscillations into a sterile fourth neutrino, <span><math><mrow><msub><mrow><mi>ν</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>→</mo><msub><mrow><mi>ν</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow></math></span>. We find such a solution generates substantial tension with several null experiments, owing to the large mixing angle required. While this does not exclude such solutions – the sterile sector might include multiple neutrinos as well as new interactions – it shows the need for more experimental constraints, if we are to make progress in resolving the Ga and other low-energy neutrino anomalies. We conclude by consider the role future low-energy electron-capture sources could play in this effort.</p></div>\",\"PeriodicalId\":412,\"journal\":{\"name\":\"Progress in Particle and Nuclear Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.5000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0146641023000637/pdfft?md5=6095ff5f92e1bbbd29a5ca4f20f766c0&pid=1-s2.0-S0146641023000637-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Particle and Nuclear Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0146641023000637\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Particle and Nuclear Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0146641023000637","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 1

摘要

为了测试镓太阳中微子实验的端到端操作,制造了强电子捕获源来测量放射化学SAGE和GALLEX/GNO探测器对已知低能中微子通量的响应。考虑到常规进行的许多71Ge回收和计数测试,这些测试当时被视为交叉检查,结果非常好。然而,四个51Cr和37Ar源实验产生的速率低于预期,这一结果通常被称为Ga异常。由于电子捕获源的强度可以高精度地测量,它们产生的中微子线是由已知的原子和核速率固定的,并且71Ga上的中微子吸收截面受到71Ge寿命的严格限制,因此还没有发现对异常的简单解释。为了检查这些校准实验,进行了一个专门的BEST实验,利用了一个前所未有强度的中微子源和一个优化的探测器来增加统计数据,同时提供了一些关于计数率作为离源距离函数的信息。BEST获得的结果与早期的太阳中微子校准实验一致,并且当与这些测量相结合时,在保守的假设下,产生了显著性约为4σ的Ga异常。但BEST没有发现距离依赖性的证据,因此也没有明确的新物理迹象。在这篇综述中,我们描述了SAGE、GALLEX/GNO和BEST为证明其实验程序的可靠性和准确性而开展的广泛活动,包括71Ge回收、计数和分析。我们还描述了定义中微子捕获截面不确定性的努力,现在包括对0.5%水平的影响的估计,如辐射校正和弱磁性。根据BEST的结果,即使只保留到71Ge基态的转变,异常仍然存在,71Ge的强度由71Ge已知的寿命固定。然后,我们考虑最常见的解决Ga异常的新物理解决方案,即振荡为无菌的第四个中微子→Γs。我们发现,由于需要大的混合角,这样的解决方案在几个零实验中产生了很大的张力。虽然这并不排除这样的解决方案——无菌部门可能包括多个中微子以及新的相互作用——但这表明,如果我们要在解决Ga和其他低能中微子异常方面取得进展,就需要更多的实验约束。最后,我们考虑了未来低能电子捕获源在这项工作中可能发挥的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The gallium anomaly

In order to test the end-to-end operations of gallium solar neutrino experiments, intense electron-capture sources were fabricated to measure the responses of the radiochemical SAGE and GALLEX/GNO detectors to known fluxes of low-energy neutrinos. Such tests were viewed at the time as a cross-check, given the many tests of 71Ge recovery and counting that had been routinely performed, with excellent results. However, the four 51Cr and 37Ar source experiments yielded rates below expectations, a result commonly known as the Ga anomaly. As the intensity of the electron-capture sources can be measured to high precision, the neutrino lines they produce are fixed by known atomic and nuclear rates, and the neutrino absorption cross section on 71Ga is tightly constrained by the lifetime of 71Ge, no simple explanation for the anomaly has been found. To check these calibration experiments, a dedicated experiment BEST was performed, utilizing a neutrino source of unprecedented intensity and a detector optimized to increase statistics while providing some information on counting rate as a function of distance from the source. The results BEST obtained are consistent with the earlier solar neutrino calibration experiments, and when combined with those measurements, yield a Ga anomaly with a significance of approximately 4σ, under conservative assumptions. But BEST found no evidence of distance dependence and thus no explicit indication of new physics. In this review we describe the extensive campaigns carried out by SAGE, GALLEX/GNO, and BEST to demonstrate the reliability and precision of their experimental procedures, including 71Ge recovery, counting, and analysis. We also describe efforts to define uncertainties in the neutrino capture cross section, which now include estimates of effects at the 0.5% level such as radiative corrections and weak magnetism. With the results from BEST, an anomaly remains even if one retains only the transition to the 71Ge ground state, whose strength is fixed by the known lifetime of 71Ge. We then consider the new-physics solution most commonly suggested to resolve the Ga anomaly, oscillations into a sterile fourth neutrino, νeνs. We find such a solution generates substantial tension with several null experiments, owing to the large mixing angle required. While this does not exclude such solutions – the sterile sector might include multiple neutrinos as well as new interactions – it shows the need for more experimental constraints, if we are to make progress in resolving the Ga and other low-energy neutrino anomalies. We conclude by consider the role future low-energy electron-capture sources could play in this effort.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Particle and Nuclear Physics
Progress in Particle and Nuclear Physics 物理-物理:核物理
CiteScore
24.50
自引率
3.10%
发文量
41
审稿时长
72 days
期刊介绍: Taking the format of four issues per year, the journal Progress in Particle and Nuclear Physics aims to discuss new developments in the field at a level suitable for the general nuclear and particle physicist and, in greater technical depth, to explore the most important advances in these areas. Most of the articles will be in one of the fields of nuclear physics, hadron physics, heavy ion physics, particle physics, as well as astrophysics and cosmology. A particular effort is made to treat topics of an interface type for which both particle and nuclear physics are important. Related topics such as detector physics, accelerator physics or the application of nuclear physics in the medical and archaeological fields will also be treated from time to time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信