实指数多项式环的全局维数

IF 0.9 1区 数学 Q2 MATHEMATICS
Nathan Geist, Ezra Miller
{"title":"实指数多项式环的全局维数","authors":"Nathan Geist, Ezra Miller","doi":"10.2140/ant.2023.17.1779","DOIUrl":null,"url":null,"abstract":"<p>The ring <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>R</mi></math> of real-exponent polynomials in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi></math> variables over any field has global dimension <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi>\n<mo>+</mo> <mn>1</mn></math> and flat dimension <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi></math>. In particular, the residue field <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> k</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits-->\n<mo>=</mo>\n<mi>R</mi><mo>∕</mo><mi mathvariant=\"fraktur\">𝔪</mi></math> of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>R</mi></math> modulo its maximal graded ideal <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"fraktur\">𝔪</mi></math> has flat dimension <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi></math> via a Koszul-like resolution. Projective and flat resolutions of all <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>R</mi></math>-modules are constructed from this resolution of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> k</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></math>. The same results hold when <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>R</mi></math> is replaced by the monoid algebra for the positive cone of any subgroup of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>ℝ</mi></mrow><mrow><mi>n</mi></mrow></msup></math> satisfying a mild density condition. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"12 24","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Global dimension of real-exponent polynomial rings\",\"authors\":\"Nathan Geist, Ezra Miller\",\"doi\":\"10.2140/ant.2023.17.1779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The ring <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>R</mi></math> of real-exponent polynomials in <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>n</mi></math> variables over any field has global dimension <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>n</mi>\\n<mo>+</mo> <mn>1</mn></math> and flat dimension <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>n</mi></math>. In particular, the residue field <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi> k</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits-->\\n<mo>=</mo>\\n<mi>R</mi><mo>∕</mo><mi mathvariant=\\\"fraktur\\\">𝔪</mi></math> of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>R</mi></math> modulo its maximal graded ideal <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"fraktur\\\">𝔪</mi></math> has flat dimension <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>n</mi></math> via a Koszul-like resolution. Projective and flat resolutions of all <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>R</mi></math>-modules are constructed from this resolution of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi> k</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></math>. The same results hold when <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>R</mi></math> is replaced by the monoid algebra for the positive cone of any subgroup of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>ℝ</mi></mrow><mrow><mi>n</mi></mrow></msup></math> satisfying a mild density condition. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"12 24\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2023.17.1779\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2023.17.1779","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global dimension of real-exponent polynomial rings

The ring R of real-exponent polynomials in n variables over any field has global dimension n + 1 and flat dimension n. In particular, the residue field k = R𝔪 of R modulo its maximal graded ideal 𝔪 has flat dimension n via a Koszul-like resolution. Projective and flat resolutions of all R-modules are constructed from this resolution of k . The same results hold when R is replaced by the monoid algebra for the positive cone of any subgroup of n satisfying a mild density condition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信