{"title":"实指数多项式环的全局维数","authors":"Nathan Geist, Ezra Miller","doi":"10.2140/ant.2023.17.1779","DOIUrl":null,"url":null,"abstract":"<p>The ring <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>R</mi></math> of real-exponent polynomials in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi></math> variables over any field has global dimension <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi>\n<mo>+</mo> <mn>1</mn></math> and flat dimension <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi></math>. In particular, the residue field <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> k</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits-->\n<mo>=</mo>\n<mi>R</mi><mo>∕</mo><mi mathvariant=\"fraktur\">𝔪</mi></math> of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>R</mi></math> modulo its maximal graded ideal <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"fraktur\">𝔪</mi></math> has flat dimension <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi></math> via a Koszul-like resolution. Projective and flat resolutions of all <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>R</mi></math>-modules are constructed from this resolution of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> k</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></math>. The same results hold when <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>R</mi></math> is replaced by the monoid algebra for the positive cone of any subgroup of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>ℝ</mi></mrow><mrow><mi>n</mi></mrow></msup></math> satisfying a mild density condition. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"12 24","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Global dimension of real-exponent polynomial rings\",\"authors\":\"Nathan Geist, Ezra Miller\",\"doi\":\"10.2140/ant.2023.17.1779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The ring <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>R</mi></math> of real-exponent polynomials in <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>n</mi></math> variables over any field has global dimension <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>n</mi>\\n<mo>+</mo> <mn>1</mn></math> and flat dimension <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>n</mi></math>. In particular, the residue field <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi> k</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits-->\\n<mo>=</mo>\\n<mi>R</mi><mo>∕</mo><mi mathvariant=\\\"fraktur\\\">𝔪</mi></math> of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>R</mi></math> modulo its maximal graded ideal <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"fraktur\\\">𝔪</mi></math> has flat dimension <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>n</mi></math> via a Koszul-like resolution. Projective and flat resolutions of all <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>R</mi></math>-modules are constructed from this resolution of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi> k</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></math>. The same results hold when <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>R</mi></math> is replaced by the monoid algebra for the positive cone of any subgroup of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>ℝ</mi></mrow><mrow><mi>n</mi></mrow></msup></math> satisfying a mild density condition. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"12 24\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2023.17.1779\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2023.17.1779","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Global dimension of real-exponent polynomial rings
The ring of real-exponent polynomials in variables over any field has global dimension and flat dimension . In particular, the residue field of modulo its maximal graded ideal has flat dimension via a Koszul-like resolution. Projective and flat resolutions of all -modules are constructed from this resolution of . The same results hold when is replaced by the monoid algebra for the positive cone of any subgroup of satisfying a mild density condition.
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.