完美权力之间的差异:主要权力差距

IF 0.9 1区 数学 Q2 MATHEMATICS
Michael A. Bennett, Samir Siksek
{"title":"完美权力之间的差异:主要权力差距","authors":"Michael A. Bennett, Samir Siksek","doi":"10.2140/ant.2023.17.1789","DOIUrl":null,"url":null,"abstract":"<p>We develop machinery to explicitly determine, in many instances, when the difference <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup>\n<mo>−</mo> <msup><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msup></math> is divisible only by powers of a given fixed prime. This combines a wide variety of techniques from Diophantine approximation (bounds for linear forms in logarithms, both archimedean and nonarchimedean, lattice basis reduction, methods for solving Thue–Mahler and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>S</mi></math>-unit equations, and the primitive divisor theorem of Bilu, Hanrot and Voutier) and classical algebraic number theory, with results derived from the modularity of Galois representations attached to Frey–Hellegoaurch elliptic curves. By way of example, we completely solve the equation </p>\n<div><math display=\"block\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup>\n<mo>+</mo> <msup><mrow><mi>q</mi></mrow><mrow><mi>α</mi></mrow></msup>\n<mo>=</mo> <msup><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo>\n</math>\n</div>\n<p> where <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn>\n<mo>≤</mo>\n<mi>q</mi>\n<mo>&lt;</mo> <mn>1</mn><mn>0</mn><mn>0</mn></math> is prime, and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>α</mi></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi></math> are integers with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi>\n<mo>≥</mo> <mn>3</mn></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> gcd</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><mo stretchy=\"false\">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy=\"false\">)</mo>\n<mo>=</mo> <mn>1</mn></math>. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"12 25","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Differences between perfect powers: prime power gaps\",\"authors\":\"Michael A. Bennett, Samir Siksek\",\"doi\":\"10.2140/ant.2023.17.1789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We develop machinery to explicitly determine, in many instances, when the difference <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup>\\n<mo>−</mo> <msup><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msup></math> is divisible only by powers of a given fixed prime. This combines a wide variety of techniques from Diophantine approximation (bounds for linear forms in logarithms, both archimedean and nonarchimedean, lattice basis reduction, methods for solving Thue–Mahler and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>S</mi></math>-unit equations, and the primitive divisor theorem of Bilu, Hanrot and Voutier) and classical algebraic number theory, with results derived from the modularity of Galois representations attached to Frey–Hellegoaurch elliptic curves. By way of example, we completely solve the equation </p>\\n<div><math display=\\\"block\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n<msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup>\\n<mo>+</mo> <msup><mrow><mi>q</mi></mrow><mrow><mi>α</mi></mrow></msup>\\n<mo>=</mo> <msup><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo>\\n</math>\\n</div>\\n<p> where <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>2</mn>\\n<mo>≤</mo>\\n<mi>q</mi>\\n<mo>&lt;</mo> <mn>1</mn><mn>0</mn><mn>0</mn></math> is prime, and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>α</mi></math> and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>n</mi></math> are integers with <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>n</mi>\\n<mo>≥</mo> <mn>3</mn></math> and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi> gcd</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy=\\\"false\\\">)</mo>\\n<mo>=</mo> <mn>1</mn></math>. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"12 25\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2023.17.1789\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2023.17.1789","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

我们开发了一种机制,在许多情况下,明确地确定差值x2−yn何时只能被给定固定素数的幂整除。这结合了Diophantine近似(对数线性形式的边界,包括阿基米德和非阿基米德,格基约简,求解Thue–Mahler和S单元方程的方法,以及Bilu、Hanrot和Voutier的原始除数定理)和经典代数数论的各种技术,其结果来自附加到Frey–Hellegourch椭圆曲线的Galois表示的模块性。举例来说,我们完全求解方程x2+qα=yn,其中2≤q<;100是素数,x、y、α和n是n≥3且gcd的整数⁡ (x,y)=1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differences between perfect powers: prime power gaps

We develop machinery to explicitly determine, in many instances, when the difference x2 yn is divisible only by powers of a given fixed prime. This combines a wide variety of techniques from Diophantine approximation (bounds for linear forms in logarithms, both archimedean and nonarchimedean, lattice basis reduction, methods for solving Thue–Mahler and S-unit equations, and the primitive divisor theorem of Bilu, Hanrot and Voutier) and classical algebraic number theory, with results derived from the modularity of Galois representations attached to Frey–Hellegoaurch elliptic curves. By way of example, we completely solve the equation

x2 + qα = yn,

where 2 q < 100 is prime, and x,y,α and n are integers with n 3 and gcd (x,y) = 1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信