{"title":"完美权力之间的差异:主要权力差距","authors":"Michael A. Bennett, Samir Siksek","doi":"10.2140/ant.2023.17.1789","DOIUrl":null,"url":null,"abstract":"<p>We develop machinery to explicitly determine, in many instances, when the difference <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup>\n<mo>−</mo> <msup><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msup></math> is divisible only by powers of a given fixed prime. This combines a wide variety of techniques from Diophantine approximation (bounds for linear forms in logarithms, both archimedean and nonarchimedean, lattice basis reduction, methods for solving Thue–Mahler and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>S</mi></math>-unit equations, and the primitive divisor theorem of Bilu, Hanrot and Voutier) and classical algebraic number theory, with results derived from the modularity of Galois representations attached to Frey–Hellegoaurch elliptic curves. By way of example, we completely solve the equation </p>\n<div><math display=\"block\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup>\n<mo>+</mo> <msup><mrow><mi>q</mi></mrow><mrow><mi>α</mi></mrow></msup>\n<mo>=</mo> <msup><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo>\n</math>\n</div>\n<p> where <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn>\n<mo>≤</mo>\n<mi>q</mi>\n<mo><</mo> <mn>1</mn><mn>0</mn><mn>0</mn></math> is prime, and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>α</mi></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi></math> are integers with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi>\n<mo>≥</mo> <mn>3</mn></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> gcd</mi><mo> <!--FUNCTION APPLICATION--> </mo><mo stretchy=\"false\">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy=\"false\">)</mo>\n<mo>=</mo> <mn>1</mn></math>. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"12 25","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Differences between perfect powers: prime power gaps\",\"authors\":\"Michael A. Bennett, Samir Siksek\",\"doi\":\"10.2140/ant.2023.17.1789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We develop machinery to explicitly determine, in many instances, when the difference <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup>\\n<mo>−</mo> <msup><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msup></math> is divisible only by powers of a given fixed prime. This combines a wide variety of techniques from Diophantine approximation (bounds for linear forms in logarithms, both archimedean and nonarchimedean, lattice basis reduction, methods for solving Thue–Mahler and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>S</mi></math>-unit equations, and the primitive divisor theorem of Bilu, Hanrot and Voutier) and classical algebraic number theory, with results derived from the modularity of Galois representations attached to Frey–Hellegoaurch elliptic curves. By way of example, we completely solve the equation </p>\\n<div><math display=\\\"block\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n<msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup>\\n<mo>+</mo> <msup><mrow><mi>q</mi></mrow><mrow><mi>α</mi></mrow></msup>\\n<mo>=</mo> <msup><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo>\\n</math>\\n</div>\\n<p> where <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>2</mn>\\n<mo>≤</mo>\\n<mi>q</mi>\\n<mo><</mo> <mn>1</mn><mn>0</mn><mn>0</mn></math> is prime, and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>α</mi></math> and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>n</mi></math> are integers with <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>n</mi>\\n<mo>≥</mo> <mn>3</mn></math> and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi> gcd</mi><mo> <!--FUNCTION APPLICATION--> </mo><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy=\\\"false\\\">)</mo>\\n<mo>=</mo> <mn>1</mn></math>. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"12 25\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2023.17.1789\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2023.17.1789","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Differences between perfect powers: prime power gaps
We develop machinery to explicitly determine, in many instances, when the difference is divisible only by powers of a given fixed prime. This combines a wide variety of techniques from Diophantine approximation (bounds for linear forms in logarithms, both archimedean and nonarchimedean, lattice basis reduction, methods for solving Thue–Mahler and -unit equations, and the primitive divisor theorem of Bilu, Hanrot and Voutier) and classical algebraic number theory, with results derived from the modularity of Galois representations attached to Frey–Hellegoaurch elliptic curves. By way of example, we completely solve the equation
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.