{"title":"关于斜阿贝尔Iwasawa塔中Frobenius特征值的变化","authors":"Asvin G.","doi":"10.2140/ant.2023.17.2151","DOIUrl":null,"url":null,"abstract":"<p>We study towers of varieties over a finite field such as <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup>\n<mo>=</mo>\n<mi>f</mi><mo stretchy=\"false\">(</mo><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mi>ℓ</mi></mrow><mrow><mi>n</mi></mrow></msup>\n</mrow></msup><mo stretchy=\"false\">)</mo></math> and prove that the characteristic polynomials of the Frobenius on the étale cohomology show a surprising <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℓ</mi></math>-adic convergence. We prove this by proving a more general statement about the convergence of certain invariants related to a skew-abelian cohomology group. The key ingredient is a generalization of Fermat’s little theorem to matrices. Along the way, we will prove that many natural sequences of polynomials <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mo stretchy=\"false\">(</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></msub>\n<mo>∈</mo> <msub><mrow><mi>ℤ</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><msup><mrow><mo stretchy=\"false\">[</mo><mi>x</mi><mo stretchy=\"false\">]</mo></mrow><mrow><mi>ℕ</mi></mrow></msup></math> converge <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℓ</mi></math>-adically and give explicit rates of convergence. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"11 20","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the variation of Frobenius eigenvalues in a skew-abelian Iwasawa tower\",\"authors\":\"Asvin G.\",\"doi\":\"10.2140/ant.2023.17.2151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study towers of varieties over a finite field such as <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup>\\n<mo>=</mo>\\n<mi>f</mi><mo stretchy=\\\"false\\\">(</mo><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mi>ℓ</mi></mrow><mrow><mi>n</mi></mrow></msup>\\n</mrow></msup><mo stretchy=\\\"false\\\">)</mo></math> and prove that the characteristic polynomials of the Frobenius on the étale cohomology show a surprising <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>ℓ</mi></math>-adic convergence. We prove this by proving a more general statement about the convergence of certain invariants related to a skew-abelian cohomology group. The key ingredient is a generalization of Fermat’s little theorem to matrices. Along the way, we will prove that many natural sequences of polynomials <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">)</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></msub>\\n<mo>∈</mo> <msub><mrow><mi>ℤ</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><msup><mrow><mo stretchy=\\\"false\\\">[</mo><mi>x</mi><mo stretchy=\\\"false\\\">]</mo></mrow><mrow><mi>ℕ</mi></mrow></msup></math> converge <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>ℓ</mi></math>-adically and give explicit rates of convergence. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"11 20\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2023.17.2151\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2023.17.2151","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the variation of Frobenius eigenvalues in a skew-abelian Iwasawa tower
We study towers of varieties over a finite field such as and prove that the characteristic polynomials of the Frobenius on the étale cohomology show a surprising -adic convergence. We prove this by proving a more general statement about the convergence of certain invariants related to a skew-abelian cohomology group. The key ingredient is a generalization of Fermat’s little theorem to matrices. Along the way, we will prove that many natural sequences of polynomials converge -adically and give explicit rates of convergence.
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.