关于斜阿贝尔Iwasawa塔中Frobenius特征值的变化

IF 0.9 1区 数学 Q2 MATHEMATICS
Asvin G.
{"title":"关于斜阿贝尔Iwasawa塔中Frobenius特征值的变化","authors":"Asvin G.","doi":"10.2140/ant.2023.17.2151","DOIUrl":null,"url":null,"abstract":"<p>We study towers of varieties over a finite field such as <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup>\n<mo>=</mo>\n<mi>f</mi><mo stretchy=\"false\">(</mo><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mi>ℓ</mi></mrow><mrow><mi>n</mi></mrow></msup>\n</mrow></msup><mo stretchy=\"false\">)</mo></math> and prove that the characteristic polynomials of the Frobenius on the étale cohomology show a surprising <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℓ</mi></math>-adic convergence. We prove this by proving a more general statement about the convergence of certain invariants related to a skew-abelian cohomology group. The key ingredient is a generalization of Fermat’s little theorem to matrices. Along the way, we will prove that many natural sequences of polynomials <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mo stretchy=\"false\">(</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></msub>\n<mo>∈</mo> <msub><mrow><mi>ℤ</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><msup><mrow><mo stretchy=\"false\">[</mo><mi>x</mi><mo stretchy=\"false\">]</mo></mrow><mrow><mi>ℕ</mi></mrow></msup></math> converge <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℓ</mi></math>-adically and give explicit rates of convergence. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"11 20","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the variation of Frobenius eigenvalues in a skew-abelian Iwasawa tower\",\"authors\":\"Asvin G.\",\"doi\":\"10.2140/ant.2023.17.2151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study towers of varieties over a finite field such as <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup>\\n<mo>=</mo>\\n<mi>f</mi><mo stretchy=\\\"false\\\">(</mo><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mi>ℓ</mi></mrow><mrow><mi>n</mi></mrow></msup>\\n</mrow></msup><mo stretchy=\\\"false\\\">)</mo></math> and prove that the characteristic polynomials of the Frobenius on the étale cohomology show a surprising <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>ℓ</mi></math>-adic convergence. We prove this by proving a more general statement about the convergence of certain invariants related to a skew-abelian cohomology group. The key ingredient is a generalization of Fermat’s little theorem to matrices. Along the way, we will prove that many natural sequences of polynomials <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">)</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></msub>\\n<mo>∈</mo> <msub><mrow><mi>ℤ</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><msup><mrow><mo stretchy=\\\"false\\\">[</mo><mi>x</mi><mo stretchy=\\\"false\\\">]</mo></mrow><mrow><mi>ℕ</mi></mrow></msup></math> converge <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>ℓ</mi></math>-adically and give explicit rates of convergence. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"11 20\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2023.17.2151\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2023.17.2151","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了有限域上的变种塔,如y2=f(xℓn) 并证明了Frobenius在étale上同调上的特征多项式显示出令人惊奇的ℓ-adic收敛。我们通过证明关于与偏斜阿贝尔上同调群相关的某些不变量的收敛性的更一般的陈述来证明这一点。关键因素是将费马小定理推广到矩阵。在此过程中,我们将证明多项式的许多自然序列(pn(x))n≥1∈ℤℓ[x]ℕ 会聚ℓ-adially,并给出明确的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the variation of Frobenius eigenvalues in a skew-abelian Iwasawa tower

We study towers of varieties over a finite field such as y2 = f(xn ) and prove that the characteristic polynomials of the Frobenius on the étale cohomology show a surprising -adic convergence. We prove this by proving a more general statement about the convergence of certain invariants related to a skew-abelian cohomology group. The key ingredient is a generalization of Fermat’s little theorem to matrices. Along the way, we will prove that many natural sequences of polynomials (pn(x))n1 [x] converge -adically and give explicit rates of convergence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信