酉群的极限多重性与稳定迹公式

IF 0.9 1区 数学 Q2 MATHEMATICS
Mathilde Gerbelli-Gauthier
{"title":"酉群的极限多重性与稳定迹公式","authors":"Mathilde Gerbelli-Gauthier","doi":"10.2140/ant.2023.17.2181","DOIUrl":null,"url":null,"abstract":"<p>We give upper bounds on limit multiplicities of certain nontempered representations of unitary groups <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>U</mi><mo stretchy=\"false\">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy=\"false\">)</mo></math>, conditionally on the endoscopic classification of representations. Our result applies to some cohomological representations, and we give applications to the growth of cohomology of cocompact arithmetic subgroups of unitary groups. The representations considered are transfers of products of characters and discrete series on endoscopic groups, and the bounds are obtained using Arthur’s stabilization of the trace formula and the classification established by Mok, and Kaletha, Minguez, Shin and White. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"11 22","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limit multiplicity for unitary groups and the stable trace formula\",\"authors\":\"Mathilde Gerbelli-Gauthier\",\"doi\":\"10.2140/ant.2023.17.2181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We give upper bounds on limit multiplicities of certain nontempered representations of unitary groups <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>U</mi><mo stretchy=\\\"false\\\">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy=\\\"false\\\">)</mo></math>, conditionally on the endoscopic classification of representations. Our result applies to some cohomological representations, and we give applications to the growth of cohomology of cocompact arithmetic subgroups of unitary groups. The representations considered are transfers of products of characters and discrete series on endoscopic groups, and the bounds are obtained using Arthur’s stabilization of the trace formula and the classification established by Mok, and Kaletha, Minguez, Shin and White. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"11 22\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2023.17.2181\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2023.17.2181","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了酉群U(a,b)的某些非温度表示的极限乘性的上界,条件是表示的内窥镜分类。我们的结果适用于一些上同调表示,并应用于酉群的共紧算术子群上同调的增长。所考虑的表示是字符和离散序列的乘积在内窥镜组上的转移,并且使用迹公式的Arthur稳定和Mok、Kaletha、Minguez、Shin和White建立的分类来获得边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limit multiplicity for unitary groups and the stable trace formula

We give upper bounds on limit multiplicities of certain nontempered representations of unitary groups U(a,b), conditionally on the endoscopic classification of representations. Our result applies to some cohomological representations, and we give applications to the growth of cohomology of cocompact arithmetic subgroups of unitary groups. The representations considered are transfers of products of characters and discrete series on endoscopic groups, and the bounds are obtained using Arthur’s stabilization of the trace formula and the classification established by Mok, and Kaletha, Minguez, Shin and White.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信