E-光滑态射和(FRS)态射的一个数论性质:对ℤ∕pkℤ-点

IF 0.9 1区 数学 Q2 MATHEMATICS
Raf Cluckers, Itay Glazer, Yotam I. Hendel
{"title":"E-光滑态射和(FRS)态射的一个数论性质:对ℤ∕pkℤ-点","authors":"Raf Cluckers, Itay Glazer, Yotam I. Hendel","doi":"10.2140/ant.2023.17.2229","DOIUrl":null,"url":null,"abstract":"<p>We provide uniform estimates on the number of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℤ</mi><mo>∕</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow></msup><mi>ℤ</mi></math>-points lying on fibers of flat morphisms between smooth varieties whose fibers have rational singularities, termed (FRS) morphisms. For each individual fiber, the estimates were known by work of Avni and Aizenbud, but we render them uniform over all fibers. The proof technique for individual fibers is based on Hironaka’s resolution of singularities and Denef’s formula, but breaks down in the uniform case. Instead, we use recent results from the theory of motivic integration. Our estimates are moreover equivalent to the (FRS) property, just like in the absolute case by Avni and Aizenbud. In addition, we define new classes of morphisms, called <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>E</mi></math>-smooth morphisms (<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>E</mi>\n<mo>∈</mo>\n<mi>ℕ</mi></math>), which refine the (FRS) property, and use the methods we developed to provide uniform number-theoretic estimates as above for their fibers. Similar estimates are given for fibers of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>𝜀</mi></math>-jet flat morphisms, improving previous results by the last two authors. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"11 21","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A number theoretic characterization of E-smooth and (FRS) morphisms : estimates on the number of ℤ∕pkℤ-points\",\"authors\":\"Raf Cluckers, Itay Glazer, Yotam I. Hendel\",\"doi\":\"10.2140/ant.2023.17.2229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We provide uniform estimates on the number of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>ℤ</mi><mo>∕</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow></msup><mi>ℤ</mi></math>-points lying on fibers of flat morphisms between smooth varieties whose fibers have rational singularities, termed (FRS) morphisms. For each individual fiber, the estimates were known by work of Avni and Aizenbud, but we render them uniform over all fibers. The proof technique for individual fibers is based on Hironaka’s resolution of singularities and Denef’s formula, but breaks down in the uniform case. Instead, we use recent results from the theory of motivic integration. Our estimates are moreover equivalent to the (FRS) property, just like in the absolute case by Avni and Aizenbud. In addition, we define new classes of morphisms, called <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>E</mi></math>-smooth morphisms (<math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>E</mi>\\n<mo>∈</mo>\\n<mi>ℕ</mi></math>), which refine the (FRS) property, and use the methods we developed to provide uniform number-theoretic estimates as above for their fibers. Similar estimates are given for fibers of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>𝜀</mi></math>-jet flat morphisms, improving previous results by the last two authors. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"11 21\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2023.17.2229\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2023.17.2229","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
A number theoretic characterization of E-smooth and (FRS) morphisms : estimates on the number of ℤ∕pkℤ-points

We provide uniform estimates on the number of pk-points lying on fibers of flat morphisms between smooth varieties whose fibers have rational singularities, termed (FRS) morphisms. For each individual fiber, the estimates were known by work of Avni and Aizenbud, but we render them uniform over all fibers. The proof technique for individual fibers is based on Hironaka’s resolution of singularities and Denef’s formula, but breaks down in the uniform case. Instead, we use recent results from the theory of motivic integration. Our estimates are moreover equivalent to the (FRS) property, just like in the absolute case by Avni and Aizenbud. In addition, we define new classes of morphisms, called E-smooth morphisms (E ), which refine the (FRS) property, and use the methods we developed to provide uniform number-theoretic estimates as above for their fibers. Similar estimates are given for fibers of 𝜀-jet flat morphisms, improving previous results by the last two authors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信