关于Fermat品种内部的伪线性循环

IF 0.9 1区 数学 Q2 MATHEMATICS
Jorge Duque Franco, Roberto Villaflor Loyola
{"title":"关于Fermat品种内部的伪线性循环","authors":"Jorge Duque Franco, Roberto Villaflor Loyola","doi":"10.2140/ant.2023.17.1847","DOIUrl":null,"url":null,"abstract":"<p>We introduce a new class of Hodge cycles with nonreduced associated Hodge loci; we call them fake linear cycles. We characterize them for all Fermat varieties and show that they exist only for degrees <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi>\n<mo>=</mo> <mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>6</mn></math>, where there are infinitely many in the space of Hodge cycles. These cycles are pathological in the sense that the Zariski tangent space of their associated Hodge locus is of maximal dimension, contrary to a conjecture of Movasati. They provide examples of algebraic cycles not generated by their periods in the sense of Movasati and Sertöz (2021). To study them we compute their Galois action in cohomology and their second-order invariant of the IVHS. We conclude that for any degree <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi>\n<mo>≥</mo> <mn>2</mn>\n<mo>+</mo> <mfrac><mrow><mn>6</mn></mrow>\n<mrow><mi>n</mi></mrow></mfrac></math>, the minimal codimension component of the Hodge locus passing through the Fermat variety is the one parametrizing hypersurfaces containing linear subvarieties of dimension <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mi>n</mi></mrow>\n<mrow><mn>2</mn></mrow></mfrac> </math>, extending results of Green, Voisin, Otwinowska and the Villaflor Loyola. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"12 26","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On fake linear cycles inside Fermat varieties\",\"authors\":\"Jorge Duque Franco, Roberto Villaflor Loyola\",\"doi\":\"10.2140/ant.2023.17.1847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a new class of Hodge cycles with nonreduced associated Hodge loci; we call them fake linear cycles. We characterize them for all Fermat varieties and show that they exist only for degrees <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>d</mi>\\n<mo>=</mo> <mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>6</mn></math>, where there are infinitely many in the space of Hodge cycles. These cycles are pathological in the sense that the Zariski tangent space of their associated Hodge locus is of maximal dimension, contrary to a conjecture of Movasati. They provide examples of algebraic cycles not generated by their periods in the sense of Movasati and Sertöz (2021). To study them we compute their Galois action in cohomology and their second-order invariant of the IVHS. We conclude that for any degree <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>d</mi>\\n<mo>≥</mo> <mn>2</mn>\\n<mo>+</mo> <mfrac><mrow><mn>6</mn></mrow>\\n<mrow><mi>n</mi></mrow></mfrac></math>, the minimal codimension component of the Hodge locus passing through the Fermat variety is the one parametrizing hypersurfaces containing linear subvarieties of dimension <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mfrac><mrow><mi>n</mi></mrow>\\n<mrow><mn>2</mn></mrow></mfrac> </math>, extending results of Green, Voisin, Otwinowska and the Villaflor Loyola. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"12 26\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2023.17.1847\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2023.17.1847","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

我们引入了一类新的具有非还原关联Hodge基因座的Hodge环;我们称之为伪线性循环。我们为所有Fermat变种刻画了它们的特征,并证明它们只存在于d=3,4,6度,其中在Hodge循环的空间中有无限多个。这些循环是病态的,因为它们相关的Hodge轨迹的Zariski切空间是最大维的,这与Movasati的猜想相反。它们提供了Movasati和Sertöz(2021)意义上的代数循环的例子,这些代数循环不是由它们的周期生成的。为了研究它们,我们计算了它们在上同调中的Galois作用和IVHS的二阶不变量。我们得出结论,对于任意阶d≥2+6n,通过Fermat变种的Hodge轨迹的最小余维分量是一个参数化包含维数为n2的线性子变种的超曲面,扩展了Green、Voisin、Otwinowska和Villaflor-Loyola的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On fake linear cycles inside Fermat varieties

We introduce a new class of Hodge cycles with nonreduced associated Hodge loci; we call them fake linear cycles. We characterize them for all Fermat varieties and show that they exist only for degrees d = 3,4,6, where there are infinitely many in the space of Hodge cycles. These cycles are pathological in the sense that the Zariski tangent space of their associated Hodge locus is of maximal dimension, contrary to a conjecture of Movasati. They provide examples of algebraic cycles not generated by their periods in the sense of Movasati and Sertöz (2021). To study them we compute their Galois action in cohomology and their second-order invariant of the IVHS. We conclude that for any degree d 2 + 6 n, the minimal codimension component of the Hodge locus passing through the Fermat variety is the one parametrizing hypersurfaces containing linear subvarieties of dimension n 2 , extending results of Green, Voisin, Otwinowska and the Villaflor Loyola.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信