Uni强效ℓ-单连通p-adic群的块

IF 0.9 1区 数学 Q2 MATHEMATICS
Thomas Lanard
{"title":"Uni强效ℓ-单连通p-adic群的块","authors":"Thomas Lanard","doi":"10.2140/ant.2023.17.1533","DOIUrl":null,"url":null,"abstract":"<p>Let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi></math> be a nonarchimedean local field and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math> the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi></math>-points of a connected simply connected reductive group over <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi></math>. We study the unipotent <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℓ</mi></math>-blocks of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math>, for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℓ</mi><mo>≠</mo><mi>p</mi></math>. To that end, we introduce the notion of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mi>d</mi><mo>,</mo><mn>1</mn><mo stretchy=\"false\">)</mo></math>-series for finite reductive groups. These series form a partition of the irreducible representations and are defined using Harish-Chandra theory and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi></math>-Harish-Chandra theory. The <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℓ</mi></math>-blocks are then constructed using these <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mi>d</mi><mo>,</mo><mn>1</mn><mo stretchy=\"false\">)</mo></math>-series, with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi></math> the order of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>q</mi></math> modulo <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℓ</mi></math>, and consistent systems of idempotents on the Bruhat–Tits building of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math>. We also describe the stable <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℓ</mi></math>-block decomposition of the depth zero category of an unramified classical group. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"13 4","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Unipotent ℓ-blocks for simply connected p-adic groups\",\"authors\":\"Thomas Lanard\",\"doi\":\"10.2140/ant.2023.17.1533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>F</mi></math> be a nonarchimedean local field and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>G</mi></math> the <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>F</mi></math>-points of a connected simply connected reductive group over <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>F</mi></math>. We study the unipotent <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>ℓ</mi></math>-blocks of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>G</mi></math>, for <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>ℓ</mi><mo>≠</mo><mi>p</mi></math>. To that end, we introduce the notion of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo stretchy=\\\"false\\\">(</mo><mi>d</mi><mo>,</mo><mn>1</mn><mo stretchy=\\\"false\\\">)</mo></math>-series for finite reductive groups. These series form a partition of the irreducible representations and are defined using Harish-Chandra theory and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>d</mi></math>-Harish-Chandra theory. The <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>ℓ</mi></math>-blocks are then constructed using these <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo stretchy=\\\"false\\\">(</mo><mi>d</mi><mo>,</mo><mn>1</mn><mo stretchy=\\\"false\\\">)</mo></math>-series, with <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>d</mi></math> the order of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>q</mi></math> modulo <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>ℓ</mi></math>, and consistent systems of idempotents on the Bruhat–Tits building of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>G</mi></math>. We also describe the stable <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>ℓ</mi></math>-block decomposition of the depth zero category of an unramified classical group. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"13 4\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2023.17.1533\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2023.17.1533","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

设F是非阿基米德局部域,G是F上连通单连通还原群的F-点ℓ-G的块,用于ℓ≠p。为此,我们引入了有限归约群的(d,1)-级数的概念。这些级数形成了不可约表示的一个划分,并使用Harish-Chandra理论和d-Harish-Chandra理论进行了定义。这个ℓ-然后使用这些(d,1)-级数构造块,其中d是q的模阶ℓ, 以及G的Bruhat–Tits构造上的幂等元的一致系统。我们还描述了稳定的ℓ-非分枝经典群的深度零范畴的块分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unipotent ℓ-blocks for simply connected p-adic groups

Let F be a nonarchimedean local field and G the F-points of a connected simply connected reductive group over F. We study the unipotent -blocks of G, for p. To that end, we introduce the notion of (d,1)-series for finite reductive groups. These series form a partition of the irreducible representations and are defined using Harish-Chandra theory and d-Harish-Chandra theory. The -blocks are then constructed using these (d,1)-series, with d the order of q modulo , and consistent systems of idempotents on the Bruhat–Tits building of G. We also describe the stable -block decomposition of the depth zero category of an unramified classical group.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信