{"title":"关于投影格式和条件ND的第一个非平凡的合成链(ℓ)","authors":"Jeaman Ahn, Kangjin Han, Sijong Kwak","doi":"10.2140/ant.2023.17.1359","DOIUrl":null,"url":null,"abstract":"<p>Let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>X</mi>\n<mo>⊂</mo> <msup><mrow><mi>ℙ</mi></mrow><mrow><mi>n</mi><mo>+</mo><mi>e</mi></mrow></msup></math> be any <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi></math>-dimensional closed subscheme. We are mainly interested in two notions related to syzygies: one is the property <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mstyle mathvariant=\"bold\"><mi>N</mi></mstyle></mrow><mrow><mi>d</mi><mo>,</mo><mi>p</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>d</mi>\n<mo>≥</mo> <mn>2</mn><mo>,</mo><mi>p</mi>\n<mo>≥</mo> <mn>1</mn><mo stretchy=\"false\">)</mo></math>, which means that <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>X</mi></math> is <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi></math>-regular up to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>-th step in the minimal free resolution and the other is a new notion <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> ND</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>ℓ</mi><mo stretchy=\"false\">)</mo></math> which generalizes the classical “being nondegenerate” to the condition that requires a general finite linear section not to be contained in any hypersurface of degree <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℓ</mi></math>. </p><p> First, we introduce condition <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> ND</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>ℓ</mi><mo stretchy=\"false\">)</mo></math> and consider examples and basic properties deduced from the notion. Next we prove sharp upper bounds on the graded Betti numbers of the first nontrivial strand of syzygies, which generalize results in the quadratic case to higher degree case, and provide characterizations for the extremal cases. Further, after regarding some consequences of property <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mstyle mathvariant=\"bold\"><mi>N</mi></mstyle></mrow><mrow><mi>d</mi><mo>,</mo><mi>p</mi></mrow></msub></math>, we characterize the resolution of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>X</mi></math> to be <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi></math>-linear arithmetically Cohen–Macaulay as having property <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mstyle mathvariant=\"bold\"><mi>N</mi></mstyle></mrow><mrow><mi>d</mi><mo>,</mo><mi>e</mi></mrow></msub></math> and condition <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> ND</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>d</mi>\n<mo>−</mo> <mn>1</mn><mo stretchy=\"false\">)</mo></math> at the same time. From this result, we obtain a syzygetic rigidity theorem which suggests a natural generalization of syzygetic rigidity on <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn></math>-regularity due to Eisenbud, Green, Hulek and Popescu to a general <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi></math>-regularity. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"13 9","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the first nontrivial strand of syzygies of projective schemes and condition ND(ℓ)\",\"authors\":\"Jeaman Ahn, Kangjin Han, Sijong Kwak\",\"doi\":\"10.2140/ant.2023.17.1359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>X</mi>\\n<mo>⊂</mo> <msup><mrow><mi>ℙ</mi></mrow><mrow><mi>n</mi><mo>+</mo><mi>e</mi></mrow></msup></math> be any <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>n</mi></math>-dimensional closed subscheme. We are mainly interested in two notions related to syzygies: one is the property <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mstyle mathvariant=\\\"bold\\\"><mi>N</mi></mstyle></mrow><mrow><mi>d</mi><mo>,</mo><mi>p</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>d</mi>\\n<mo>≥</mo> <mn>2</mn><mo>,</mo><mi>p</mi>\\n<mo>≥</mo> <mn>1</mn><mo stretchy=\\\"false\\\">)</mo></math>, which means that <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>X</mi></math> is <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>d</mi></math>-regular up to <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>p</mi></math>-th step in the minimal free resolution and the other is a new notion <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi> ND</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\\\"false\\\">(</mo><mi>ℓ</mi><mo stretchy=\\\"false\\\">)</mo></math> which generalizes the classical “being nondegenerate” to the condition that requires a general finite linear section not to be contained in any hypersurface of degree <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>ℓ</mi></math>. </p><p> First, we introduce condition <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi> ND</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\\\"false\\\">(</mo><mi>ℓ</mi><mo stretchy=\\\"false\\\">)</mo></math> and consider examples and basic properties deduced from the notion. Next we prove sharp upper bounds on the graded Betti numbers of the first nontrivial strand of syzygies, which generalize results in the quadratic case to higher degree case, and provide characterizations for the extremal cases. Further, after regarding some consequences of property <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mstyle mathvariant=\\\"bold\\\"><mi>N</mi></mstyle></mrow><mrow><mi>d</mi><mo>,</mo><mi>p</mi></mrow></msub></math>, we characterize the resolution of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>X</mi></math> to be <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>d</mi></math>-linear arithmetically Cohen–Macaulay as having property <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mstyle mathvariant=\\\"bold\\\"><mi>N</mi></mstyle></mrow><mrow><mi>d</mi><mo>,</mo><mi>e</mi></mrow></msub></math> and condition <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi> ND</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\\\"false\\\">(</mo><mi>d</mi>\\n<mo>−</mo> <mn>1</mn><mo stretchy=\\\"false\\\">)</mo></math> at the same time. From this result, we obtain a syzygetic rigidity theorem which suggests a natural generalization of syzygetic rigidity on <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>2</mn></math>-regularity due to Eisenbud, Green, Hulek and Popescu to a general <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>d</mi></math>-regularity. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"13 9\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2023.17.1359\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2023.17.1359","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the first nontrivial strand of syzygies of projective schemes and condition ND(ℓ)
Let be any -dimensional closed subscheme. We are mainly interested in two notions related to syzygies: one is the property , which means that is -regular up to -th step in the minimal free resolution and the other is a new notion which generalizes the classical “being nondegenerate” to the condition that requires a general finite linear section not to be contained in any hypersurface of degree .
First, we introduce condition and consider examples and basic properties deduced from the notion. Next we prove sharp upper bounds on the graded Betti numbers of the first nontrivial strand of syzygies, which generalize results in the quadratic case to higher degree case, and provide characterizations for the extremal cases. Further, after regarding some consequences of property , we characterize the resolution of to be -linear arithmetically Cohen–Macaulay as having property and condition at the same time. From this result, we obtain a syzygetic rigidity theorem which suggests a natural generalization of syzygetic rigidity on -regularity due to Eisenbud, Green, Hulek and Popescu to a general -regularity.
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.