关于投影格式和条件ND的第一个非平凡的合成链(ℓ)

IF 0.9 1区 数学 Q2 MATHEMATICS
Jeaman Ahn, Kangjin Han, Sijong Kwak
{"title":"关于投影格式和条件ND的第一个非平凡的合成链(ℓ)","authors":"Jeaman Ahn, Kangjin Han, Sijong Kwak","doi":"10.2140/ant.2023.17.1359","DOIUrl":null,"url":null,"abstract":"<p>Let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>X</mi>\n<mo>⊂</mo> <msup><mrow><mi>ℙ</mi></mrow><mrow><mi>n</mi><mo>+</mo><mi>e</mi></mrow></msup></math> be any <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi></math>-dimensional closed subscheme. We are mainly interested in two notions related to syzygies: one is the property <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mstyle mathvariant=\"bold\"><mi>N</mi></mstyle></mrow><mrow><mi>d</mi><mo>,</mo><mi>p</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>d</mi>\n<mo>≥</mo> <mn>2</mn><mo>,</mo><mi>p</mi>\n<mo>≥</mo> <mn>1</mn><mo stretchy=\"false\">)</mo></math>, which means that <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>X</mi></math> is <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi></math>-regular up to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>-th step in the minimal free resolution and the other is a new notion <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> ND</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>ℓ</mi><mo stretchy=\"false\">)</mo></math> which generalizes the classical “being nondegenerate” to the condition that requires a general finite linear section not to be contained in any hypersurface of degree <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℓ</mi></math>. </p><p> First, we introduce condition <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> ND</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>ℓ</mi><mo stretchy=\"false\">)</mo></math> and consider examples and basic properties deduced from the notion. Next we prove sharp upper bounds on the graded Betti numbers of the first nontrivial strand of syzygies, which generalize results in the quadratic case to higher degree case, and provide characterizations for the extremal cases. Further, after regarding some consequences of property <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mstyle mathvariant=\"bold\"><mi>N</mi></mstyle></mrow><mrow><mi>d</mi><mo>,</mo><mi>p</mi></mrow></msub></math>, we characterize the resolution of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>X</mi></math> to be <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi></math>-linear arithmetically Cohen–Macaulay as having property <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mstyle mathvariant=\"bold\"><mi>N</mi></mstyle></mrow><mrow><mi>d</mi><mo>,</mo><mi>e</mi></mrow></msub></math> and condition <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> ND</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>d</mi>\n<mo>−</mo> <mn>1</mn><mo stretchy=\"false\">)</mo></math> at the same time. From this result, we obtain a syzygetic rigidity theorem which suggests a natural generalization of syzygetic rigidity on <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn></math>-regularity due to Eisenbud, Green, Hulek and Popescu to a general <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi></math>-regularity. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"13 9","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the first nontrivial strand of syzygies of projective schemes and condition ND(ℓ)\",\"authors\":\"Jeaman Ahn, Kangjin Han, Sijong Kwak\",\"doi\":\"10.2140/ant.2023.17.1359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>X</mi>\\n<mo>⊂</mo> <msup><mrow><mi>ℙ</mi></mrow><mrow><mi>n</mi><mo>+</mo><mi>e</mi></mrow></msup></math> be any <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>n</mi></math>-dimensional closed subscheme. We are mainly interested in two notions related to syzygies: one is the property <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mstyle mathvariant=\\\"bold\\\"><mi>N</mi></mstyle></mrow><mrow><mi>d</mi><mo>,</mo><mi>p</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>d</mi>\\n<mo>≥</mo> <mn>2</mn><mo>,</mo><mi>p</mi>\\n<mo>≥</mo> <mn>1</mn><mo stretchy=\\\"false\\\">)</mo></math>, which means that <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>X</mi></math> is <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>d</mi></math>-regular up to <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>p</mi></math>-th step in the minimal free resolution and the other is a new notion <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi> ND</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\\\"false\\\">(</mo><mi>ℓ</mi><mo stretchy=\\\"false\\\">)</mo></math> which generalizes the classical “being nondegenerate” to the condition that requires a general finite linear section not to be contained in any hypersurface of degree <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>ℓ</mi></math>. </p><p> First, we introduce condition <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi> ND</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\\\"false\\\">(</mo><mi>ℓ</mi><mo stretchy=\\\"false\\\">)</mo></math> and consider examples and basic properties deduced from the notion. Next we prove sharp upper bounds on the graded Betti numbers of the first nontrivial strand of syzygies, which generalize results in the quadratic case to higher degree case, and provide characterizations for the extremal cases. Further, after regarding some consequences of property <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mstyle mathvariant=\\\"bold\\\"><mi>N</mi></mstyle></mrow><mrow><mi>d</mi><mo>,</mo><mi>p</mi></mrow></msub></math>, we characterize the resolution of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>X</mi></math> to be <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>d</mi></math>-linear arithmetically Cohen–Macaulay as having property <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mstyle mathvariant=\\\"bold\\\"><mi>N</mi></mstyle></mrow><mrow><mi>d</mi><mo>,</mo><mi>e</mi></mrow></msub></math> and condition <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi> ND</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\\\"false\\\">(</mo><mi>d</mi>\\n<mo>−</mo> <mn>1</mn><mo stretchy=\\\"false\\\">)</mo></math> at the same time. From this result, we obtain a syzygetic rigidity theorem which suggests a natural generalization of syzygetic rigidity on <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>2</mn></math>-regularity due to Eisenbud, Green, Hulek and Popescu to a general <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>d</mi></math>-regularity. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"13 9\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2023.17.1359\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2023.17.1359","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

设X⊂ℙn+e是任意n维闭次血红素。我们主要感兴趣的是与合成有关的两个概念:一个是性质Nd,p(d≥2,p≥1),这意味着X在最小自由分辨率下直到第p步都是d-正则的;另一个是新概念Nd⁡ (ℓ) 它将经典的“不退化”推广到要求一般有限线性截面不包含在任何次超曲面中的条件ℓ. 首先,我们引入条件ND⁡ (ℓ) 并考虑从该概念推导出的实例和基本性质。接下来,我们证明了第一个非平凡序列的分次Betti数的尖锐上界,它将二次情况下的结果推广到更高阶情况,并提供了极值情况的特征。此外,在考虑了性质Nd,p的一些结果后,我们将X的分辨率定性为d-线性算术Cohen–Macaulay,称其具有性质Nd、e和条件Nd⁡ (d−1)。从这一结果中,我们得到了一个合成刚性定理,它表明了由Eisenbud、Green、Hulek和Popescu将2-正则性上的合成刚性自然推广为一般的d-正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the first nontrivial strand of syzygies of projective schemes and condition ND(ℓ)

Let X n+e be any n-dimensional closed subscheme. We are mainly interested in two notions related to syzygies: one is the property Nd,p(d 2,p 1), which means that X is d-regular up to p-th step in the minimal free resolution and the other is a new notion ND () which generalizes the classical “being nondegenerate” to the condition that requires a general finite linear section not to be contained in any hypersurface of degree .

First, we introduce condition ND () and consider examples and basic properties deduced from the notion. Next we prove sharp upper bounds on the graded Betti numbers of the first nontrivial strand of syzygies, which generalize results in the quadratic case to higher degree case, and provide characterizations for the extremal cases. Further, after regarding some consequences of property Nd,p, we characterize the resolution of X to be d-linear arithmetically Cohen–Macaulay as having property Nd,e and condition ND (d 1) at the same time. From this result, we obtain a syzygetic rigidity theorem which suggests a natural generalization of syzygetic rigidity on 2-regularity due to Eisenbud, Green, Hulek and Popescu to a general d-regularity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信