{"title":"关于G-变种切丛的矩映射和大性","authors":"Jie Liu","doi":"10.2140/ant.2023.17.1501","DOIUrl":null,"url":null,"abstract":"<p>Let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math> be a connected algebraic group and let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>X</mi></math> be a smooth projective <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math>-variety. We prove a sufficient criterion to determine the bigness of the tangent bundle <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi><mi>X</mi></math> using the moment map <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mrow><mi>Φ</mi></mrow><mrow><mi>X</mi></mrow><mrow><mi>G</mi></mrow></msubsup>\n<mo>:</mo> <msup><mrow><mi>T</mi></mrow><mrow><mo>∗</mo></mrow></msup><mi>X</mi>\n<mo>→</mo><msup><mrow>\n<mi mathvariant=\"fraktur\">𝔤</mi></mrow><mrow><mo>∗</mo></mrow></msup></math>. As an application, the bigness of the tangent bundles of certain quasihomogeneous varieties are verified, including symmetric varieties, horospherical varieties and equivariant compactifications of commutative linear algebraic groups. Finally, we study in details the Fano manifolds <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>X</mi></math> with Picard number <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn></math> which is an equivariant compactification of a vector group <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mrow><mi mathvariant=\"double-struck\">𝔾</mi></mrow><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math>. In particular, we will determine the pseudoeffective cone of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℙ</mi><mo stretchy=\"false\">(</mo><msup><mrow><mi>T</mi></mrow><mrow><mo>∗</mo></mrow></msup><mi>X</mi><mo stretchy=\"false\">)</mo></math> and show that the image of the projectivised moment map along the boundary divisor <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>D</mi></math> of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>X</mi></math> is projectively equivalent to the dual variety of the variety of minimal rational tangents of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>X</mi></math> at a general point. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"13 17","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On moment map and bigness of tangent bundles of G-varieties\",\"authors\":\"Jie Liu\",\"doi\":\"10.2140/ant.2023.17.1501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>G</mi></math> be a connected algebraic group and let <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>X</mi></math> be a smooth projective <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>G</mi></math>-variety. We prove a sufficient criterion to determine the bigness of the tangent bundle <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>T</mi><mi>X</mi></math> using the moment map <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup><mrow><mi>Φ</mi></mrow><mrow><mi>X</mi></mrow><mrow><mi>G</mi></mrow></msubsup>\\n<mo>:</mo> <msup><mrow><mi>T</mi></mrow><mrow><mo>∗</mo></mrow></msup><mi>X</mi>\\n<mo>→</mo><msup><mrow>\\n<mi mathvariant=\\\"fraktur\\\">𝔤</mi></mrow><mrow><mo>∗</mo></mrow></msup></math>. As an application, the bigness of the tangent bundles of certain quasihomogeneous varieties are verified, including symmetric varieties, horospherical varieties and equivariant compactifications of commutative linear algebraic groups. Finally, we study in details the Fano manifolds <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>X</mi></math> with Picard number <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>1</mn></math> which is an equivariant compactification of a vector group <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup><mrow><mi mathvariant=\\\"double-struck\\\">𝔾</mi></mrow><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math>. In particular, we will determine the pseudoeffective cone of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>ℙ</mi><mo stretchy=\\\"false\\\">(</mo><msup><mrow><mi>T</mi></mrow><mrow><mo>∗</mo></mrow></msup><mi>X</mi><mo stretchy=\\\"false\\\">)</mo></math> and show that the image of the projectivised moment map along the boundary divisor <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>D</mi></math> of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>X</mi></math> is projectively equivalent to the dual variety of the variety of minimal rational tangents of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>X</mi></math> at a general point. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"13 17\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2023.17.1501\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2023.17.1501","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On moment map and bigness of tangent bundles of G-varieties
Let be a connected algebraic group and let be a smooth projective -variety. We prove a sufficient criterion to determine the bigness of the tangent bundle using the moment map . As an application, the bigness of the tangent bundles of certain quasihomogeneous varieties are verified, including symmetric varieties, horospherical varieties and equivariant compactifications of commutative linear algebraic groups. Finally, we study in details the Fano manifolds with Picard number which is an equivariant compactification of a vector group . In particular, we will determine the pseudoeffective cone of and show that the image of the projectivised moment map along the boundary divisor of is projectively equivalent to the dual variety of the variety of minimal rational tangents of at a general point.
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.