刚性分析变种的p-adic-Simpson对应关系

IF 0.9 1区 数学 Q2 MATHEMATICS
Yupeng Wang
{"title":"刚性分析变种的p-adic-Simpson对应关系","authors":"Yupeng Wang","doi":"10.2140/ant.2023.17.1453","DOIUrl":null,"url":null,"abstract":"<p>We establish a <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>-adic Simpson correspondence in the spirit of Liu and Zhu for rigid analytic varieties <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>X</mi></math> over <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>ℂ</mi></mrow><mrow><mi>p</mi></mrow></msub></math> with a liftable good reduction by constructing a new period sheaf on <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>X</mi></mrow><mrow><!--mstyle--><mtext mathvariant=\"normal\"> proét</mtext><!--/mstyle--></mrow></msub></math>. To do so, we use the theory of cotangent complexes described by Beilinson and Bhatt. Then we give an integral decompletion theorem and complete the proof by local calculations. Our construction is compatible with the previous works of Faltings and Liu and Zhu. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"13 19","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A p-adic Simpson correspondence for rigid analytic varieties\",\"authors\":\"Yupeng Wang\",\"doi\":\"10.2140/ant.2023.17.1453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We establish a <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>p</mi></math>-adic Simpson correspondence in the spirit of Liu and Zhu for rigid analytic varieties <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>X</mi></math> over <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>ℂ</mi></mrow><mrow><mi>p</mi></mrow></msub></math> with a liftable good reduction by constructing a new period sheaf on <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>X</mi></mrow><mrow><!--mstyle--><mtext mathvariant=\\\"normal\\\"> proét</mtext><!--/mstyle--></mrow></msub></math>. To do so, we use the theory of cotangent complexes described by Beilinson and Bhatt. Then we give an integral decompletion theorem and complete the proof by local calculations. Our construction is compatible with the previous works of Faltings and Liu and Zhu. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"13 19\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2023.17.1453\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2023.17.1453","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10

摘要

在刘和朱的精神下,我们建立了刚性分析变量X上的p-adic-Simpson对应关系ℂ通过在Xét上构造一个新的周期sheaf,p具有可提升的良好约简。为此,我们使用了Beilinson和Bhatt描述的余切配合物理论。然后给出了一个积分反完备定理,并通过局部计算完成了证明。我们的结构与法尔廷斯和刘、朱以前的作品是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A p-adic Simpson correspondence for rigid analytic varieties

We establish a p-adic Simpson correspondence in the spirit of Liu and Zhu for rigid analytic varieties X over p with a liftable good reduction by constructing a new period sheaf on X proét. To do so, we use the theory of cotangent complexes described by Beilinson and Bhatt. Then we give an integral decompletion theorem and complete the proof by local calculations. Our construction is compatible with the previous works of Faltings and Liu and Zhu.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信