{"title":"刚性分析变种的p-adic-Simpson对应关系","authors":"Yupeng Wang","doi":"10.2140/ant.2023.17.1453","DOIUrl":null,"url":null,"abstract":"<p>We establish a <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>-adic Simpson correspondence in the spirit of Liu and Zhu for rigid analytic varieties <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>X</mi></math> over <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>ℂ</mi></mrow><mrow><mi>p</mi></mrow></msub></math> with a liftable good reduction by constructing a new period sheaf on <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>X</mi></mrow><mrow><!--mstyle--><mtext mathvariant=\"normal\"> proét</mtext><!--/mstyle--></mrow></msub></math>. To do so, we use the theory of cotangent complexes described by Beilinson and Bhatt. Then we give an integral decompletion theorem and complete the proof by local calculations. Our construction is compatible with the previous works of Faltings and Liu and Zhu. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"13 19","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A p-adic Simpson correspondence for rigid analytic varieties\",\"authors\":\"Yupeng Wang\",\"doi\":\"10.2140/ant.2023.17.1453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We establish a <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>p</mi></math>-adic Simpson correspondence in the spirit of Liu and Zhu for rigid analytic varieties <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>X</mi></math> over <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>ℂ</mi></mrow><mrow><mi>p</mi></mrow></msub></math> with a liftable good reduction by constructing a new period sheaf on <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>X</mi></mrow><mrow><!--mstyle--><mtext mathvariant=\\\"normal\\\"> proét</mtext><!--/mstyle--></mrow></msub></math>. To do so, we use the theory of cotangent complexes described by Beilinson and Bhatt. Then we give an integral decompletion theorem and complete the proof by local calculations. Our construction is compatible with the previous works of Faltings and Liu and Zhu. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"13 19\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2023.17.1453\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2023.17.1453","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A p-adic Simpson correspondence for rigid analytic varieties
We establish a -adic Simpson correspondence in the spirit of Liu and Zhu for rigid analytic varieties over with a liftable good reduction by constructing a new period sheaf on . To do so, we use the theory of cotangent complexes described by Beilinson and Bhatt. Then we give an integral decompletion theorem and complete the proof by local calculations. Our construction is compatible with the previous works of Faltings and Liu and Zhu.
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.