{"title":"利用菲涅耳透镜减薄AIRR中的远程航空显示系统","authors":"Shinya Sakane, Shiro Suyama, Hirotsugu Yamamoto","doi":"10.1007/s10043-023-00845-5","DOIUrl":null,"url":null,"abstract":"<div><p>Aerial displays for providing road information require long-distance image formation and a compact installation space. This paper proposes a compact optical system for forming long-distance floating images by introducing a Fresnel lens in an aerial imaging by retro-reflection (AIRR) optical system. In the conventional AIRR optics, since the aerial image position is the plane-symmetrical position of the light source with respect to the beam splitter, the installation space for forming a long-distance aerial image becomes huge. Our proposed method uses the virtual image formed by a Fresnel lens as the light source in an AIRR optical system. This leads to a much longer distance from the beam splitter to the aerial image than the distance from the beam splitter to the light source. We developed a prototype long-distance floating aerial display system using a large-scale Fresnel lens. As a result, the distance from the LED panel to the beam splitter was halved. Furthermore, we used two beam splitters to form two aerial images by using a single LED panel. Long-distance floating images could be formed 3.4 m and 4.6 m away from the beam splitters and could be seen with the naked eye.</p></div>","PeriodicalId":722,"journal":{"name":"Optical Review","volume":"30 6","pages":"657 - 663"},"PeriodicalIF":1.1000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10043-023-00845-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Reducing thickness of long-distance aerial display system in AIRR using Fresnel lens\",\"authors\":\"Shinya Sakane, Shiro Suyama, Hirotsugu Yamamoto\",\"doi\":\"10.1007/s10043-023-00845-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aerial displays for providing road information require long-distance image formation and a compact installation space. This paper proposes a compact optical system for forming long-distance floating images by introducing a Fresnel lens in an aerial imaging by retro-reflection (AIRR) optical system. In the conventional AIRR optics, since the aerial image position is the plane-symmetrical position of the light source with respect to the beam splitter, the installation space for forming a long-distance aerial image becomes huge. Our proposed method uses the virtual image formed by a Fresnel lens as the light source in an AIRR optical system. This leads to a much longer distance from the beam splitter to the aerial image than the distance from the beam splitter to the light source. We developed a prototype long-distance floating aerial display system using a large-scale Fresnel lens. As a result, the distance from the LED panel to the beam splitter was halved. Furthermore, we used two beam splitters to form two aerial images by using a single LED panel. Long-distance floating images could be formed 3.4 m and 4.6 m away from the beam splitters and could be seen with the naked eye.</p></div>\",\"PeriodicalId\":722,\"journal\":{\"name\":\"Optical Review\",\"volume\":\"30 6\",\"pages\":\"657 - 663\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10043-023-00845-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Review\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10043-023-00845-5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Review","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10043-023-00845-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Reducing thickness of long-distance aerial display system in AIRR using Fresnel lens
Aerial displays for providing road information require long-distance image formation and a compact installation space. This paper proposes a compact optical system for forming long-distance floating images by introducing a Fresnel lens in an aerial imaging by retro-reflection (AIRR) optical system. In the conventional AIRR optics, since the aerial image position is the plane-symmetrical position of the light source with respect to the beam splitter, the installation space for forming a long-distance aerial image becomes huge. Our proposed method uses the virtual image formed by a Fresnel lens as the light source in an AIRR optical system. This leads to a much longer distance from the beam splitter to the aerial image than the distance from the beam splitter to the light source. We developed a prototype long-distance floating aerial display system using a large-scale Fresnel lens. As a result, the distance from the LED panel to the beam splitter was halved. Furthermore, we used two beam splitters to form two aerial images by using a single LED panel. Long-distance floating images could be formed 3.4 m and 4.6 m away from the beam splitters and could be seen with the naked eye.
期刊介绍:
Optical Review is an international journal published by the Optical Society of Japan. The scope of the journal is:
General and physical optics;
Quantum optics and spectroscopy;
Information optics;
Photonics and optoelectronics;
Biomedical photonics and biological optics;
Lasers;
Nonlinear optics;
Optical systems and technologies;
Optical materials and manufacturing technologies;
Vision;
Infrared and short wavelength optics;
Cross-disciplinary areas such as environmental, energy, food, agriculture and space technologies;
Other optical methods and applications.