Zeming Wu, Chundi Hu, Lifei Lin, Weizhen Chen, Lixuan Huang, Zijian Lin, Song Yang
{"title":"孟加拉湾与南海热带气旋活动的强协变性研究","authors":"Zeming Wu, Chundi Hu, Lifei Lin, Weizhen Chen, Lixuan Huang, Zijian Lin, Song Yang","doi":"10.1038/s41612-023-00506-z","DOIUrl":null,"url":null,"abstract":"Herein, we report a strong in-phase covariability of tropical cyclone (TC) activity between the Bay of Bengal (BOB) and the South China Sea (SCS) during October–December of 1979–2019, and which is also the dominant mode of BOB–SCS TC activity, accounting for 35% of the total variances in TC track density. This inter-basin TC covariance is closely linked to the anomalies of tropical sea surface temperature, appearing as the intrinsic Indo-Pacific Tripole mode, which significantly affects the atmospheric circulations overlying the BOB–SCS. Interestingly, this mechanism works via modulating the local TC genesis frequency in the BOB–SCS. However, in terms of the migrated TCs among them, the Indo-Pacific Tripole mainly regulates their genesis location but not their frequency. More importantly, such inter-basin TC covariability still exists significantly even when the TC track data migrating from the SCS into the BOB are excluded. After all, only 19 TCs during the 41 years (1979–2019) are observed to migrate from the SCS to the BOB, which can only contribute slightly to increasing the covariability of BOB–SCS TC-track activity, but do not play a dominant role. Further, the numerical simulations suggest that although both the Indian and Pacific Oceans contribute to the atmospheric anomalies that affect the BOB–SCS TC activity, the Pacific-effect is twice as important.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-12"},"PeriodicalIF":8.5000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-023-00506-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Unraveling the strong covariability of tropical cyclone activity between the Bay of Bengal and the South China Sea\",\"authors\":\"Zeming Wu, Chundi Hu, Lifei Lin, Weizhen Chen, Lixuan Huang, Zijian Lin, Song Yang\",\"doi\":\"10.1038/s41612-023-00506-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Herein, we report a strong in-phase covariability of tropical cyclone (TC) activity between the Bay of Bengal (BOB) and the South China Sea (SCS) during October–December of 1979–2019, and which is also the dominant mode of BOB–SCS TC activity, accounting for 35% of the total variances in TC track density. This inter-basin TC covariance is closely linked to the anomalies of tropical sea surface temperature, appearing as the intrinsic Indo-Pacific Tripole mode, which significantly affects the atmospheric circulations overlying the BOB–SCS. Interestingly, this mechanism works via modulating the local TC genesis frequency in the BOB–SCS. However, in terms of the migrated TCs among them, the Indo-Pacific Tripole mainly regulates their genesis location but not their frequency. More importantly, such inter-basin TC covariability still exists significantly even when the TC track data migrating from the SCS into the BOB are excluded. After all, only 19 TCs during the 41 years (1979–2019) are observed to migrate from the SCS to the BOB, which can only contribute slightly to increasing the covariability of BOB–SCS TC-track activity, but do not play a dominant role. Further, the numerical simulations suggest that although both the Indian and Pacific Oceans contribute to the atmospheric anomalies that affect the BOB–SCS TC activity, the Pacific-effect is twice as important.\",\"PeriodicalId\":19438,\"journal\":{\"name\":\"npj Climate and Atmospheric Science\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41612-023-00506-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Climate and Atmospheric Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.nature.com/articles/s41612-023-00506-z\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-023-00506-z","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Unraveling the strong covariability of tropical cyclone activity between the Bay of Bengal and the South China Sea
Herein, we report a strong in-phase covariability of tropical cyclone (TC) activity between the Bay of Bengal (BOB) and the South China Sea (SCS) during October–December of 1979–2019, and which is also the dominant mode of BOB–SCS TC activity, accounting for 35% of the total variances in TC track density. This inter-basin TC covariance is closely linked to the anomalies of tropical sea surface temperature, appearing as the intrinsic Indo-Pacific Tripole mode, which significantly affects the atmospheric circulations overlying the BOB–SCS. Interestingly, this mechanism works via modulating the local TC genesis frequency in the BOB–SCS. However, in terms of the migrated TCs among them, the Indo-Pacific Tripole mainly regulates their genesis location but not their frequency. More importantly, such inter-basin TC covariability still exists significantly even when the TC track data migrating from the SCS into the BOB are excluded. After all, only 19 TCs during the 41 years (1979–2019) are observed to migrate from the SCS to the BOB, which can only contribute slightly to increasing the covariability of BOB–SCS TC-track activity, but do not play a dominant role. Further, the numerical simulations suggest that although both the Indian and Pacific Oceans contribute to the atmospheric anomalies that affect the BOB–SCS TC activity, the Pacific-effect is twice as important.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.