{"title":"中年C57BL/6小鼠的自发p53激活减轻了低剂量电离辐射诱导的延长寿命的适应性反应。","authors":"Masaoki Kohzaki, Keiji Suzuki, Akira Ootsuyama, Ryuji Okazaki","doi":"10.1038/s41514-023-00123-3","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the biological effects of low-dose (<100 mGy) ionizing radiation (LDR) is technically challenging. We investigated age-dependent LDR effects using adaptive response experiments in young (7-to 12-week-old) and middle-aged (40-to 62-week-old) C57BL/6 mice. Compared with 3 Gy irradiation, 0.02 Gy preirradiation followed by 3 Gy irradiation prolonged life in young mice but not middle-aged mice. Preirradiation also suppressed irradiation-induced 53BP1 repair foci in the small intestines, splenic apoptosis, and p53 activity in young mice but not middle-aged mice. Young p53<sup>+/-</sup> C57BL/6 mice did not show these adaptive responses, indicating that insufficient p53 function in young mice mitigated the adaptive responses. Interestingly, p53 activation in middle-aged mice spontaneously became approximately 4.5-fold greater than that in young mice, possibly masking LDR stresses. Furthermore, adaptive responses in young mice, but not in middle-aged mice, suppressed some senescence-associated secretory phenotype (SASP) factors (IL-6, CCL2, CCL5, CXCL1). Thus, LDR-induced adaptive responses associated with specific SASP factors may be attenuated by a combination of reduced DNA damage sensor/transducer function and chronic p53 activation in middle-aged mice.</p>","PeriodicalId":94160,"journal":{"name":"npj aging","volume":"9 1","pages":"26"},"PeriodicalIF":4.1000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10630390/pdf/","citationCount":"0","resultStr":"{\"title\":\"Spontaneous p53 activation in middle-aged C57BL/6 mice mitigates the lifespan-extending adaptive response induced by low-dose ionizing radiation.\",\"authors\":\"Masaoki Kohzaki, Keiji Suzuki, Akira Ootsuyama, Ryuji Okazaki\",\"doi\":\"10.1038/s41514-023-00123-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding the biological effects of low-dose (<100 mGy) ionizing radiation (LDR) is technically challenging. We investigated age-dependent LDR effects using adaptive response experiments in young (7-to 12-week-old) and middle-aged (40-to 62-week-old) C57BL/6 mice. Compared with 3 Gy irradiation, 0.02 Gy preirradiation followed by 3 Gy irradiation prolonged life in young mice but not middle-aged mice. Preirradiation also suppressed irradiation-induced 53BP1 repair foci in the small intestines, splenic apoptosis, and p53 activity in young mice but not middle-aged mice. Young p53<sup>+/-</sup> C57BL/6 mice did not show these adaptive responses, indicating that insufficient p53 function in young mice mitigated the adaptive responses. Interestingly, p53 activation in middle-aged mice spontaneously became approximately 4.5-fold greater than that in young mice, possibly masking LDR stresses. Furthermore, adaptive responses in young mice, but not in middle-aged mice, suppressed some senescence-associated secretory phenotype (SASP) factors (IL-6, CCL2, CCL5, CXCL1). Thus, LDR-induced adaptive responses associated with specific SASP factors may be attenuated by a combination of reduced DNA damage sensor/transducer function and chronic p53 activation in middle-aged mice.</p>\",\"PeriodicalId\":94160,\"journal\":{\"name\":\"npj aging\",\"volume\":\"9 1\",\"pages\":\"26\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10630390/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj aging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41514-023-00123-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41514-023-00123-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
Spontaneous p53 activation in middle-aged C57BL/6 mice mitigates the lifespan-extending adaptive response induced by low-dose ionizing radiation.
Understanding the biological effects of low-dose (<100 mGy) ionizing radiation (LDR) is technically challenging. We investigated age-dependent LDR effects using adaptive response experiments in young (7-to 12-week-old) and middle-aged (40-to 62-week-old) C57BL/6 mice. Compared with 3 Gy irradiation, 0.02 Gy preirradiation followed by 3 Gy irradiation prolonged life in young mice but not middle-aged mice. Preirradiation also suppressed irradiation-induced 53BP1 repair foci in the small intestines, splenic apoptosis, and p53 activity in young mice but not middle-aged mice. Young p53+/- C57BL/6 mice did not show these adaptive responses, indicating that insufficient p53 function in young mice mitigated the adaptive responses. Interestingly, p53 activation in middle-aged mice spontaneously became approximately 4.5-fold greater than that in young mice, possibly masking LDR stresses. Furthermore, adaptive responses in young mice, but not in middle-aged mice, suppressed some senescence-associated secretory phenotype (SASP) factors (IL-6, CCL2, CCL5, CXCL1). Thus, LDR-induced adaptive responses associated with specific SASP factors may be attenuated by a combination of reduced DNA damage sensor/transducer function and chronic p53 activation in middle-aged mice.