{"title":"混合优化辅助脑电通道选择用于基于深度学习模型的运动图像任务分类。","authors":"K Venu, P Natesan","doi":"10.1515/bmt-2023-0407","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To design and develop an approach named HC + SMA-SSA scheme for classifying motor imagery task.</p><p><strong>Methods: </strong>The offered model employs a new method for classifying motor imagery task. Initially, down sampling is deployed to pre-process the incoming signal. Subsequently, \"Modified Stockwell Transform (ST) and common spatial pattern (CSP) based features are extracted\". Then, optimal channel selection is made by a novel hybrid optimization model named as Spider Monkey Assisted SSA (SMA-SSA). Here, \"Long Short Term Memory (LSTM) and Bidirectional Gated Recurrent Unit (BI-GRU)\" models are used for final classification, whose outcomes are averaged at the end. At last, the improvement of SMA-SSA based model is proven over different metrics.</p><p><strong>Results: </strong>A superior sensitivity of 0.939 is noted for HC + SMA-SSA that was higher over HC with no optimization and proposed with traditional ST.</p><p><strong>Conclusions: </strong>The proposed method achieved effective classification performance in terms of performance measures.</p>","PeriodicalId":93905,"journal":{"name":"Biomedizinische Technik. Biomedical engineering","volume":" ","pages":"125-140"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid optimization assisted channel selection of EEG for deep learning model-based classification of motor imagery task.\",\"authors\":\"K Venu, P Natesan\",\"doi\":\"10.1515/bmt-2023-0407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>To design and develop an approach named HC + SMA-SSA scheme for classifying motor imagery task.</p><p><strong>Methods: </strong>The offered model employs a new method for classifying motor imagery task. Initially, down sampling is deployed to pre-process the incoming signal. Subsequently, \\\"Modified Stockwell Transform (ST) and common spatial pattern (CSP) based features are extracted\\\". Then, optimal channel selection is made by a novel hybrid optimization model named as Spider Monkey Assisted SSA (SMA-SSA). Here, \\\"Long Short Term Memory (LSTM) and Bidirectional Gated Recurrent Unit (BI-GRU)\\\" models are used for final classification, whose outcomes are averaged at the end. At last, the improvement of SMA-SSA based model is proven over different metrics.</p><p><strong>Results: </strong>A superior sensitivity of 0.939 is noted for HC + SMA-SSA that was higher over HC with no optimization and proposed with traditional ST.</p><p><strong>Conclusions: </strong>The proposed method achieved effective classification performance in terms of performance measures.</p>\",\"PeriodicalId\":93905,\"journal\":{\"name\":\"Biomedizinische Technik. Biomedical engineering\",\"volume\":\" \",\"pages\":\"125-140\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedizinische Technik. Biomedical engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/bmt-2023-0407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/25 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedizinische Technik. Biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bmt-2023-0407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/25 0:00:00","PubModel":"Print","JCR":"","JCRName":"","Score":null,"Total":0}
Hybrid optimization assisted channel selection of EEG for deep learning model-based classification of motor imagery task.
Objectives: To design and develop an approach named HC + SMA-SSA scheme for classifying motor imagery task.
Methods: The offered model employs a new method for classifying motor imagery task. Initially, down sampling is deployed to pre-process the incoming signal. Subsequently, "Modified Stockwell Transform (ST) and common spatial pattern (CSP) based features are extracted". Then, optimal channel selection is made by a novel hybrid optimization model named as Spider Monkey Assisted SSA (SMA-SSA). Here, "Long Short Term Memory (LSTM) and Bidirectional Gated Recurrent Unit (BI-GRU)" models are used for final classification, whose outcomes are averaged at the end. At last, the improvement of SMA-SSA based model is proven over different metrics.
Results: A superior sensitivity of 0.939 is noted for HC + SMA-SSA that was higher over HC with no optimization and proposed with traditional ST.
Conclusions: The proposed method achieved effective classification performance in terms of performance measures.