Mian Wang, Wanlu Li, Regina Sanchez Flores, Ling Cai, Carlos Ezio Garciamendez-Mijares, Scott Gill, David Snyder, Jasmine Millabas, David Chafin, Yu Shrike Zhang, Azita Djalilvand
{"title":"用于组织诊断应用的生物打印人类肺癌模拟物。","authors":"Mian Wang, Wanlu Li, Regina Sanchez Flores, Ling Cai, Carlos Ezio Garciamendez-Mijares, Scott Gill, David Snyder, Jasmine Millabas, David Chafin, Yu Shrike Zhang, Azita Djalilvand","doi":"10.1089/ten.TEA.2023.0149","DOIUrl":null,"url":null,"abstract":"<p><p>Developing a reproducible and secure supply of customizable control tissues that standardizes for the cell type, tissue architecture, and preanalytics of interest for usage in applications including diagnostic, prognostic, and predictive assays, is critical for improving our patient care and welfare. The conventionally adopted control tissues directly obtained from patients are not ideal because they oftentimes have different amounts of normal and neoplastic elements, differing cellularity, differing architecture, and unknown preanalytics, in addition to the limited supply availability and thus associated high costs. In this study, we demonstrated a strategy to stably produce tissue-mimics for diagnostics purposes by taking advantage of the three-dimensional (3D) bioprinting technology. Specifically, we take anaplastic lymphoma kinase-positive (Alk+) lung cancer as an example, where a micropore-forming bioink laden with tumor cells was combined with digital light processing-based bioprinting for developing native-like Alk+ lung cancer tissue-mimics with both structural and functional relevancy. It is anticipated that our proposed methodology will pave new avenues for both fields of tissue diagnostics and 3D bioprinting significantly expanding their capacities, scope, and sustainability.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"270-279"},"PeriodicalIF":3.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioprinted Human Lung Cancer-Mimics for Tissue Diagnostics Applications.\",\"authors\":\"Mian Wang, Wanlu Li, Regina Sanchez Flores, Ling Cai, Carlos Ezio Garciamendez-Mijares, Scott Gill, David Snyder, Jasmine Millabas, David Chafin, Yu Shrike Zhang, Azita Djalilvand\",\"doi\":\"10.1089/ten.TEA.2023.0149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Developing a reproducible and secure supply of customizable control tissues that standardizes for the cell type, tissue architecture, and preanalytics of interest for usage in applications including diagnostic, prognostic, and predictive assays, is critical for improving our patient care and welfare. The conventionally adopted control tissues directly obtained from patients are not ideal because they oftentimes have different amounts of normal and neoplastic elements, differing cellularity, differing architecture, and unknown preanalytics, in addition to the limited supply availability and thus associated high costs. In this study, we demonstrated a strategy to stably produce tissue-mimics for diagnostics purposes by taking advantage of the three-dimensional (3D) bioprinting technology. Specifically, we take anaplastic lymphoma kinase-positive (Alk+) lung cancer as an example, where a micropore-forming bioink laden with tumor cells was combined with digital light processing-based bioprinting for developing native-like Alk+ lung cancer tissue-mimics with both structural and functional relevancy. It is anticipated that our proposed methodology will pave new avenues for both fields of tissue diagnostics and 3D bioprinting significantly expanding their capacities, scope, and sustainability.</p>\",\"PeriodicalId\":56375,\"journal\":{\"name\":\"Tissue Engineering Part A\",\"volume\":\" \",\"pages\":\"270-279\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue Engineering Part A\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.TEA.2023.0149\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering Part A","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEA.2023.0149","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Bioprinted Human Lung Cancer-Mimics for Tissue Diagnostics Applications.
Developing a reproducible and secure supply of customizable control tissues that standardizes for the cell type, tissue architecture, and preanalytics of interest for usage in applications including diagnostic, prognostic, and predictive assays, is critical for improving our patient care and welfare. The conventionally adopted control tissues directly obtained from patients are not ideal because they oftentimes have different amounts of normal and neoplastic elements, differing cellularity, differing architecture, and unknown preanalytics, in addition to the limited supply availability and thus associated high costs. In this study, we demonstrated a strategy to stably produce tissue-mimics for diagnostics purposes by taking advantage of the three-dimensional (3D) bioprinting technology. Specifically, we take anaplastic lymphoma kinase-positive (Alk+) lung cancer as an example, where a micropore-forming bioink laden with tumor cells was combined with digital light processing-based bioprinting for developing native-like Alk+ lung cancer tissue-mimics with both structural and functional relevancy. It is anticipated that our proposed methodology will pave new avenues for both fields of tissue diagnostics and 3D bioprinting significantly expanding their capacities, scope, and sustainability.
期刊介绍:
Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.