{"title":"神经调控:多巴胺、视黄酸、一氧化氮和其他物质对视网膜水平细胞的作用。","authors":"Douglas G McMahon, John E Dowling","doi":"10.2147/EB.S420050","DOIUrl":null,"url":null,"abstract":"<p><p>Whereas excitation and inhibition of neurons are well understood, it is clear that neuromodulatory influences on neurons and their synapses play a major role in shaping neural activity in the brain. Memory and learning, emotional and other complex behaviors, as well as cognitive disorders have all been related to neuromodulatory mechanisms. A number of neuroactive substances including monoamines such as dopamine and neuropeptides have been shown to act as neuromodulators, but other substances thought to play very different roles in the body and brain act as neuromodulators, such as retinoic acid. We still understand little about how neuromodulatory substances exert their effects, and the present review focuses on how two such substances, dopamine and retinoic acid, exert their effects. The emphasis is on the underlying neuromodulatory mechanisms down to the molecular level that allow the second order bipolar cells and the output neurons of the retina, the ganglion cells, to respond to different environmental (ie lighting) conditions. The modulation described affects a simple circuit in the outer retina, involves several neuroactive substances and is surprisingly complex and not fully understood.</p>","PeriodicalId":51844,"journal":{"name":"Eye and Brain","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10625386/pdf/","citationCount":"0","resultStr":"{\"title\":\"Neuromodulation: Actions of Dopamine, Retinoic Acid, Nitric Oxide, and Other Substances on Retinal Horizontal Cells.\",\"authors\":\"Douglas G McMahon, John E Dowling\",\"doi\":\"10.2147/EB.S420050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Whereas excitation and inhibition of neurons are well understood, it is clear that neuromodulatory influences on neurons and their synapses play a major role in shaping neural activity in the brain. Memory and learning, emotional and other complex behaviors, as well as cognitive disorders have all been related to neuromodulatory mechanisms. A number of neuroactive substances including monoamines such as dopamine and neuropeptides have been shown to act as neuromodulators, but other substances thought to play very different roles in the body and brain act as neuromodulators, such as retinoic acid. We still understand little about how neuromodulatory substances exert their effects, and the present review focuses on how two such substances, dopamine and retinoic acid, exert their effects. The emphasis is on the underlying neuromodulatory mechanisms down to the molecular level that allow the second order bipolar cells and the output neurons of the retina, the ganglion cells, to respond to different environmental (ie lighting) conditions. The modulation described affects a simple circuit in the outer retina, involves several neuroactive substances and is surprisingly complex and not fully understood.</p>\",\"PeriodicalId\":51844,\"journal\":{\"name\":\"Eye and Brain\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10625386/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eye and Brain\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2147/EB.S420050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eye and Brain","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/EB.S420050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Neuromodulation: Actions of Dopamine, Retinoic Acid, Nitric Oxide, and Other Substances on Retinal Horizontal Cells.
Whereas excitation and inhibition of neurons are well understood, it is clear that neuromodulatory influences on neurons and their synapses play a major role in shaping neural activity in the brain. Memory and learning, emotional and other complex behaviors, as well as cognitive disorders have all been related to neuromodulatory mechanisms. A number of neuroactive substances including monoamines such as dopamine and neuropeptides have been shown to act as neuromodulators, but other substances thought to play very different roles in the body and brain act as neuromodulators, such as retinoic acid. We still understand little about how neuromodulatory substances exert their effects, and the present review focuses on how two such substances, dopamine and retinoic acid, exert their effects. The emphasis is on the underlying neuromodulatory mechanisms down to the molecular level that allow the second order bipolar cells and the output neurons of the retina, the ganglion cells, to respond to different environmental (ie lighting) conditions. The modulation described affects a simple circuit in the outer retina, involves several neuroactive substances and is surprisingly complex and not fully understood.
期刊介绍:
Eye and Brain is an international, peer-reviewed, open access journal focusing on basic research, clinical findings, and expert reviews in the field of visual science and neuro-ophthalmology. The journal’s unique focus is the link between two well-known visual centres, the eye and the brain, with an emphasis on the importance of such connections. All aspects of clinical and especially basic research on the visual system are addressed within the journal as well as significant future directions in vision research and therapeutic measures. This unique journal focuses on neurological aspects of vision – both physiological and pathological. The scope of the journal spans from the cornea to the associational visual cortex and all the visual centers in between. Topics range from basic biological mechanisms to therapeutic treatment, from simple organisms to humans, and utilizing techniques from molecular biology to behavior. The journal especially welcomes primary research articles or review papers that make the connection between the eye and the brain. Specific areas covered in the journal include: Physiology and pathophysiology of visual centers, Eye movement disorders and strabismus, Cellular, biochemical, and molecular features of the visual system, Structural and functional organization of the eye and of the visual cortex, Metabolic demands of the visual system, Diseases and disorders with neuro-ophthalmic manifestations, Clinical and experimental neuro-ophthalmology and visual system pathologies, Epidemiological studies.