{"title":"细胞内细菌对宿主脂质的操纵:免疫逃避的月光。","authors":"Naveen Challagundla, Deepti Phadnis, Aakriti Gupta, Reena Agrawal-Rajput","doi":"10.1007/s00232-023-00296-8","DOIUrl":null,"url":null,"abstract":"<p><p>Lipids are complex organic molecules that fulfill energy demands and sometimes act as signaling molecules. They are mostly found in membranes, thus playing an important role in membrane trafficking and protecting the cell from external dangers. Based on the composition of the lipids, their fluidity and charge, their interaction with embedded proteins vary greatly. Bacteria can hijack host lipids to satisfy their energy needs or to conceal themselves from host cells. Intracellular bacteria continuously exploit host, from their entry into host cells utilizing host lipid machinery to exiting through the cells. This acquisition of lipids from host cells helps in their disguise mechanism. The current review explores various mechanisms employed by the intracellular bacteria to manipulate and acquire host lipids. It discusses their role in manipulating host membranes and the subsequence impact on the host cells. Modulating these lipids in macrophages not only serve the purpose of the pathogen but also modulates the macrophage energy metabolism and functional state. Additionally, we have explored the intricate pathogenic relationship and the potential prospects of using this knowledge in lipid-based therapeutics to disrupt pathogen dominance.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Host Lipid Manipulation by Intracellular Bacteria: Moonlighting for Immune Evasion.\",\"authors\":\"Naveen Challagundla, Deepti Phadnis, Aakriti Gupta, Reena Agrawal-Rajput\",\"doi\":\"10.1007/s00232-023-00296-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lipids are complex organic molecules that fulfill energy demands and sometimes act as signaling molecules. They are mostly found in membranes, thus playing an important role in membrane trafficking and protecting the cell from external dangers. Based on the composition of the lipids, their fluidity and charge, their interaction with embedded proteins vary greatly. Bacteria can hijack host lipids to satisfy their energy needs or to conceal themselves from host cells. Intracellular bacteria continuously exploit host, from their entry into host cells utilizing host lipid machinery to exiting through the cells. This acquisition of lipids from host cells helps in their disguise mechanism. The current review explores various mechanisms employed by the intracellular bacteria to manipulate and acquire host lipids. It discusses their role in manipulating host membranes and the subsequence impact on the host cells. Modulating these lipids in macrophages not only serve the purpose of the pathogen but also modulates the macrophage energy metabolism and functional state. Additionally, we have explored the intricate pathogenic relationship and the potential prospects of using this knowledge in lipid-based therapeutics to disrupt pathogen dominance.</p>\",\"PeriodicalId\":50129,\"journal\":{\"name\":\"Journal of Membrane Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00232-023-00296-8\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00232-023-00296-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Host Lipid Manipulation by Intracellular Bacteria: Moonlighting for Immune Evasion.
Lipids are complex organic molecules that fulfill energy demands and sometimes act as signaling molecules. They are mostly found in membranes, thus playing an important role in membrane trafficking and protecting the cell from external dangers. Based on the composition of the lipids, their fluidity and charge, their interaction with embedded proteins vary greatly. Bacteria can hijack host lipids to satisfy their energy needs or to conceal themselves from host cells. Intracellular bacteria continuously exploit host, from their entry into host cells utilizing host lipid machinery to exiting through the cells. This acquisition of lipids from host cells helps in their disguise mechanism. The current review explores various mechanisms employed by the intracellular bacteria to manipulate and acquire host lipids. It discusses their role in manipulating host membranes and the subsequence impact on the host cells. Modulating these lipids in macrophages not only serve the purpose of the pathogen but also modulates the macrophage energy metabolism and functional state. Additionally, we have explored the intricate pathogenic relationship and the potential prospects of using this knowledge in lipid-based therapeutics to disrupt pathogen dominance.
期刊介绍:
The Journal of Membrane Biology is dedicated to publishing high-quality science related to membrane biology, biochemistry and biophysics. In particular, we welcome work that uses modern experimental or computational methods including but not limited to those with microscopy, diffraction, NMR, computer simulations, or biochemistry aimed at membrane associated or membrane embedded proteins or model membrane systems. These methods might be applied to study topics like membrane protein structure and function, membrane mediated or controlled signaling mechanisms, cell-cell communication via gap junctions, the behavior of proteins and lipids based on monolayer or bilayer systems, or genetic and regulatory mechanisms controlling membrane function.
Research articles, short communications and reviews are all welcome. We also encourage authors to consider publishing ''negative'' results where experiments or simulations were well performed, but resulted in unusual or unexpected outcomes without obvious explanations.
While we welcome connections to clinical studies, submissions that are primarily clinical in nature or that fail to make connections to the basic science issues of membrane structure, chemistry and function, are not appropriate for the journal. In a similar way, studies that are primarily descriptive and narratives of assays in a clinical or population study are best published in other journals. If you are not certain, it is entirely appropriate to write to us to inquire if your study is a good fit for the journal.