Dan J.K. Yombo , Satish K. Madala , Chanukya P. Vemulapalli , Harshavardhana H. Ediga , William D. Hardie
{"title":"肺弹性纤维病——综述。","authors":"Dan J.K. Yombo , Satish K. Madala , Chanukya P. Vemulapalli , Harshavardhana H. Ediga , William D. Hardie","doi":"10.1016/j.matbio.2023.10.003","DOIUrl":null,"url":null,"abstract":"<div><p>Elastin is a long-lived fibrous protein that is abundant in the extracellular matrix of the lung. Elastic fibers provide the lung the characteristic elasticity during inhalation with recoil during exhalation thereby ensuring efficient gas exchange. Excessive deposition of elastin and other extracellular matrix proteins reduces lung compliance by impairing ventilation and compromising gas exchange. Notably, the degree of elastosis is associated with the progressive decline in lung function and survival in patients with interstitial lung diseases. Currently there are no proven therapies which effectively reduce the elastin burden in the lung nor prevent dysregulated elastosis. This review describes elastin's role in the healthy lung, summarizes elastosis in pulmonary diseases, and evaluates the current understanding of elastin regulation and dysregulation with the goal of guiding future research efforts to develop novel and effective therapies.</p></div>","PeriodicalId":49851,"journal":{"name":"Matrix Biology","volume":"124 ","pages":"Pages 1-7"},"PeriodicalIF":4.5000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pulmonary fibroelastosis - A review\",\"authors\":\"Dan J.K. Yombo , Satish K. Madala , Chanukya P. Vemulapalli , Harshavardhana H. Ediga , William D. Hardie\",\"doi\":\"10.1016/j.matbio.2023.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Elastin is a long-lived fibrous protein that is abundant in the extracellular matrix of the lung. Elastic fibers provide the lung the characteristic elasticity during inhalation with recoil during exhalation thereby ensuring efficient gas exchange. Excessive deposition of elastin and other extracellular matrix proteins reduces lung compliance by impairing ventilation and compromising gas exchange. Notably, the degree of elastosis is associated with the progressive decline in lung function and survival in patients with interstitial lung diseases. Currently there are no proven therapies which effectively reduce the elastin burden in the lung nor prevent dysregulated elastosis. This review describes elastin's role in the healthy lung, summarizes elastosis in pulmonary diseases, and evaluates the current understanding of elastin regulation and dysregulation with the goal of guiding future research efforts to develop novel and effective therapies.</p></div>\",\"PeriodicalId\":49851,\"journal\":{\"name\":\"Matrix Biology\",\"volume\":\"124 \",\"pages\":\"Pages 1-7\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matrix Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0945053X23001063\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matrix Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0945053X23001063","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Elastin is a long-lived fibrous protein that is abundant in the extracellular matrix of the lung. Elastic fibers provide the lung the characteristic elasticity during inhalation with recoil during exhalation thereby ensuring efficient gas exchange. Excessive deposition of elastin and other extracellular matrix proteins reduces lung compliance by impairing ventilation and compromising gas exchange. Notably, the degree of elastosis is associated with the progressive decline in lung function and survival in patients with interstitial lung diseases. Currently there are no proven therapies which effectively reduce the elastin burden in the lung nor prevent dysregulated elastosis. This review describes elastin's role in the healthy lung, summarizes elastosis in pulmonary diseases, and evaluates the current understanding of elastin regulation and dysregulation with the goal of guiding future research efforts to develop novel and effective therapies.
期刊介绍:
Matrix Biology (established in 1980 as Collagen and Related Research) is a cutting-edge journal that is devoted to publishing the latest results in matrix biology research. We welcome articles that reside at the nexus of understanding the cellular and molecular pathophysiology of the extracellular matrix. Matrix Biology focusses on solving elusive questions, opening new avenues of thought and discovery, and challenging longstanding biological paradigms.