阳离子脂质ATRA纳米制剂对苯并[a]芘诱导的小鼠肺中EGFR和B-Raf mRNA过表达的有效抑制。

IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Berlin Grace Viswanathan Mariammal, David Wilson Devarajan, Siddikuzzaman, Viswanathan Sundaram, Ragavi Ravichandran, Guruvayoorappan Chandrasekharan, Kathirvelan Chinnadurai
{"title":"阳离子脂质ATRA纳米制剂对苯并[a]芘诱导的小鼠肺中EGFR和B-Raf mRNA过表达的有效抑制。","authors":"Berlin Grace Viswanathan Mariammal, David Wilson Devarajan, Siddikuzzaman, Viswanathan Sundaram, Ragavi Ravichandran, Guruvayoorappan Chandrasekharan, Kathirvelan Chinnadurai","doi":"10.2174/0118722105246143231016105620","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The molecular drug all-trans retinoic acid (ATRA) acts on cancer cells via different molecular pathways, but its poor bioavailability in cancer cells limits its potency. This study was, therefore, carried out to analyse the oncogene expressions in the lung tissue of benzo[a]pyrene (B[a]P)-induced mice and compare between free ATRA and cationic liposome nanoformulation (lipo- ATRA) treatments.</p><p><strong>Objective: </strong>This study was designed to analyse the changes in the expression levels of epidermal growth factor receptor (EGFR) and B-Raf in the lung tissues of B[a]P-induced mice during the cancer development stage itself and to find the suppressive effect of free ATRA and lipo-ATRA.</p><p><strong>Methods: </strong>Lung cancer was induced in mice by oral ingestion of 50mg/kg body weight B[a]P weekly twice for four consecutive weeks. Then, the mice were treated with free and lipo-ATRA (0.60mg/kg) for 30 days via i.v injection. The EGFR and B-Raf gene expressions were analyzed in lung cells by reverse transcriptase polymerase chain reaction (RT-PCR) and quantitative polymerase chain reaction (qPCR).</p><p><strong>Results: </strong>The RT-PCR gene band density and the relative quantity (RQ) values from qPCR revealed both EGFR and B-Raf genes to be significantly overexpressed in B[a]P control mice while having very low or no expression in normal mice. This indicates that they function as oncogenes in B[a]P-induced lung carcinogenesis. The lipo-ATRA treatment has shown a highly significant increase in RQ values for both EGFR and BRaf when compared to the free ATRA treatment.</p><p><strong>Conclusion: </strong>The study results have revealed the cationic lipo-ATRA treatment to have enhanced the bioavailability of ATRA in lung tissue due to its significant suppression action on EGFR-mediated oncogenes' expressions. Furthermore, the EGFR and BRaf could be the molecular targets of ATRA action in lung carcinogenesis.</p>","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Suppression of EGFR and B-Raf mRNA Overexpression in the Lung of Benzo[a]pyrene-induced mice by Cationic Lipo-ATRA Nanoformulation.\",\"authors\":\"Berlin Grace Viswanathan Mariammal, David Wilson Devarajan, Siddikuzzaman, Viswanathan Sundaram, Ragavi Ravichandran, Guruvayoorappan Chandrasekharan, Kathirvelan Chinnadurai\",\"doi\":\"10.2174/0118722105246143231016105620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The molecular drug all-trans retinoic acid (ATRA) acts on cancer cells via different molecular pathways, but its poor bioavailability in cancer cells limits its potency. This study was, therefore, carried out to analyse the oncogene expressions in the lung tissue of benzo[a]pyrene (B[a]P)-induced mice and compare between free ATRA and cationic liposome nanoformulation (lipo- ATRA) treatments.</p><p><strong>Objective: </strong>This study was designed to analyse the changes in the expression levels of epidermal growth factor receptor (EGFR) and B-Raf in the lung tissues of B[a]P-induced mice during the cancer development stage itself and to find the suppressive effect of free ATRA and lipo-ATRA.</p><p><strong>Methods: </strong>Lung cancer was induced in mice by oral ingestion of 50mg/kg body weight B[a]P weekly twice for four consecutive weeks. Then, the mice were treated with free and lipo-ATRA (0.60mg/kg) for 30 days via i.v injection. The EGFR and B-Raf gene expressions were analyzed in lung cells by reverse transcriptase polymerase chain reaction (RT-PCR) and quantitative polymerase chain reaction (qPCR).</p><p><strong>Results: </strong>The RT-PCR gene band density and the relative quantity (RQ) values from qPCR revealed both EGFR and B-Raf genes to be significantly overexpressed in B[a]P control mice while having very low or no expression in normal mice. This indicates that they function as oncogenes in B[a]P-induced lung carcinogenesis. The lipo-ATRA treatment has shown a highly significant increase in RQ values for both EGFR and BRaf when compared to the free ATRA treatment.</p><p><strong>Conclusion: </strong>The study results have revealed the cationic lipo-ATRA treatment to have enhanced the bioavailability of ATRA in lung tissue due to its significant suppression action on EGFR-mediated oncogenes' expressions. Furthermore, the EGFR and BRaf could be the molecular targets of ATRA action in lung carcinogenesis.</p>\",\"PeriodicalId\":49324,\"journal\":{\"name\":\"Recent Patents on Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Patents on Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2174/0118722105246143231016105620\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Patents on Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2174/0118722105246143231016105620","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

背景:分子药物全反式维甲酸(ATRA)通过不同的分子途径作用于癌症细胞,但其在癌症细胞中的生物利用度低,限制了其效力。因此,本研究旨在分析苯并[a]芘(B[a]P)诱导的小鼠肺组织中癌基因的表达,并比较游离ATRA和阳离子脂质体纳米制剂(lipo-ATRA)处理的效果。目的:分析B〔a〕P诱导的小鼠肺组织中表皮生长因子受体(EGFR)和B-Raf在癌症发生发展过程中的表达变化,探讨游离全反式维甲酸(ATRA)和脂肪a-ATRA对肺癌的抑制作用连续几周。然后,通过静脉注射用游离和脂质ATRA(0.60mg/kg)处理小鼠30天。采用逆转录聚合酶链式反应(RT-PCR)和定量聚合酶链反应(qPCR)分析了EGFR和B-Raf基因在肺细胞中的表达老鼠。这表明它们在B[a]P诱导的肺癌发生中起致癌基因的作用。与游离ATRA治疗相比,脂质ATRA治疗显示EGFR和BRaf的RQ值均显著增加。结论:阳离子脂质ATRA对EGFR介导的癌基因表达具有显著的抑制作用,从而提高了ATRA在肺组织中的生物利用度。此外,EGFR和BRaf可能是ATRA在肺癌发生中作用的分子靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Suppression of EGFR and B-Raf mRNA Overexpression in the Lung of Benzo[a]pyrene-induced mice by Cationic Lipo-ATRA Nanoformulation.

Background: The molecular drug all-trans retinoic acid (ATRA) acts on cancer cells via different molecular pathways, but its poor bioavailability in cancer cells limits its potency. This study was, therefore, carried out to analyse the oncogene expressions in the lung tissue of benzo[a]pyrene (B[a]P)-induced mice and compare between free ATRA and cationic liposome nanoformulation (lipo- ATRA) treatments.

Objective: This study was designed to analyse the changes in the expression levels of epidermal growth factor receptor (EGFR) and B-Raf in the lung tissues of B[a]P-induced mice during the cancer development stage itself and to find the suppressive effect of free ATRA and lipo-ATRA.

Methods: Lung cancer was induced in mice by oral ingestion of 50mg/kg body weight B[a]P weekly twice for four consecutive weeks. Then, the mice were treated with free and lipo-ATRA (0.60mg/kg) for 30 days via i.v injection. The EGFR and B-Raf gene expressions were analyzed in lung cells by reverse transcriptase polymerase chain reaction (RT-PCR) and quantitative polymerase chain reaction (qPCR).

Results: The RT-PCR gene band density and the relative quantity (RQ) values from qPCR revealed both EGFR and B-Raf genes to be significantly overexpressed in B[a]P control mice while having very low or no expression in normal mice. This indicates that they function as oncogenes in B[a]P-induced lung carcinogenesis. The lipo-ATRA treatment has shown a highly significant increase in RQ values for both EGFR and BRaf when compared to the free ATRA treatment.

Conclusion: The study results have revealed the cationic lipo-ATRA treatment to have enhanced the bioavailability of ATRA in lung tissue due to its significant suppression action on EGFR-mediated oncogenes' expressions. Furthermore, the EGFR and BRaf could be the molecular targets of ATRA action in lung carcinogenesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Recent Patents on Nanotechnology
Recent Patents on Nanotechnology NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
4.70
自引率
10.00%
发文量
50
审稿时长
3 months
期刊介绍: Recent Patents on Nanotechnology publishes full-length/mini reviews and research articles that reflect or deal with studies in relation to a patent, application of reported patents in a study, discussion of comparison of results regarding application of a given patent, etc., and also guest edited thematic issues on recent patents in the field of nanotechnology. A selection of important and recent patents on nanotechnology is also included in the journal. The journal is essential reading for all researchers involved in nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信