M A Khvorostina, V O Mokrousova, P Yu Algebraistova, I A Nedorubova, V S Kuznetsova, A A Kulakov
{"title":"[通过抗溶剂3D打印制造的用于重建牙科和颌面外科中的广泛骨缺损的三维基质的性质的研究]。","authors":"M A Khvorostina, V O Mokrousova, P Yu Algebraistova, I A Nedorubova, V S Kuznetsova, A A Kulakov","doi":"10.17116/stomat202310205114","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The aim of the study to study of physical, mechanical and biocompatible properties of the matrices manufactured by antisolvent 3D printing from the solutions of polylactide-co-glycolide in tetraglycol.</p><p><strong>Material and methods: </strong>Three-dimensional scaffolds were made from a solution of polylactide-co-glycolide mixed with tetraglycol using antisolvent 3D printing. The elastic properties and the structure of the obtained matrices were studied. MTT-test and staining with PKH-26, Calcein-AM, DAPI with subsequent fluorescence microscopy were used to study biological properties.</p><p><strong>Results: </strong>The three-dimensional scaffolds had good mechanical properties. Young's modulus value was 18±2 MPa, tensile strength was 0.43±0.05 MPa. The relative survival rate of cells after the first day was 99.58±2.28%, on the 14th day - 98.14±2.22%. The structure of the scaffold promoted cell adhesion and spreading on its surface.</p><p><strong>Conclusion: </strong>The polylactide-co-glycolide matrices produced by antisolvent printing have high porosity, biocompatibility and good mechanical properties. It is allowed to use them in the future as a basis for personalized constructions for the replacement of extensive bone defects of the maxillofacial region.</p>","PeriodicalId":35887,"journal":{"name":"Stomatologiya","volume":"102 5","pages":"14-18"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Study of properties of three-dimensional matrices manufactured by antisolvent 3D printing for reconstruction of extensive bone defects in dentistry and maxillofacial surgery].\",\"authors\":\"M A Khvorostina, V O Mokrousova, P Yu Algebraistova, I A Nedorubova, V S Kuznetsova, A A Kulakov\",\"doi\":\"10.17116/stomat202310205114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>The aim of the study to study of physical, mechanical and biocompatible properties of the matrices manufactured by antisolvent 3D printing from the solutions of polylactide-co-glycolide in tetraglycol.</p><p><strong>Material and methods: </strong>Three-dimensional scaffolds were made from a solution of polylactide-co-glycolide mixed with tetraglycol using antisolvent 3D printing. The elastic properties and the structure of the obtained matrices were studied. MTT-test and staining with PKH-26, Calcein-AM, DAPI with subsequent fluorescence microscopy were used to study biological properties.</p><p><strong>Results: </strong>The three-dimensional scaffolds had good mechanical properties. Young's modulus value was 18±2 MPa, tensile strength was 0.43±0.05 MPa. The relative survival rate of cells after the first day was 99.58±2.28%, on the 14th day - 98.14±2.22%. The structure of the scaffold promoted cell adhesion and spreading on its surface.</p><p><strong>Conclusion: </strong>The polylactide-co-glycolide matrices produced by antisolvent printing have high porosity, biocompatibility and good mechanical properties. It is allowed to use them in the future as a basis for personalized constructions for the replacement of extensive bone defects of the maxillofacial region.</p>\",\"PeriodicalId\":35887,\"journal\":{\"name\":\"Stomatologiya\",\"volume\":\"102 5\",\"pages\":\"14-18\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stomatologiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17116/stomat202310205114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stomatologiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17116/stomat202310205114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
[Study of properties of three-dimensional matrices manufactured by antisolvent 3D printing for reconstruction of extensive bone defects in dentistry and maxillofacial surgery].
Objective: The aim of the study to study of physical, mechanical and biocompatible properties of the matrices manufactured by antisolvent 3D printing from the solutions of polylactide-co-glycolide in tetraglycol.
Material and methods: Three-dimensional scaffolds were made from a solution of polylactide-co-glycolide mixed with tetraglycol using antisolvent 3D printing. The elastic properties and the structure of the obtained matrices were studied. MTT-test and staining with PKH-26, Calcein-AM, DAPI with subsequent fluorescence microscopy were used to study biological properties.
Results: The three-dimensional scaffolds had good mechanical properties. Young's modulus value was 18±2 MPa, tensile strength was 0.43±0.05 MPa. The relative survival rate of cells after the first day was 99.58±2.28%, on the 14th day - 98.14±2.22%. The structure of the scaffold promoted cell adhesion and spreading on its surface.
Conclusion: The polylactide-co-glycolide matrices produced by antisolvent printing have high porosity, biocompatibility and good mechanical properties. It is allowed to use them in the future as a basis for personalized constructions for the replacement of extensive bone defects of the maxillofacial region.