细胞外小泡:肌肉骨骼疾病的一个新的临床机会。

IF 5.1 2区 医学 Q2 CELL & TISSUE ENGINEERING
Tissue Engineering. Part B, Reviews Pub Date : 2024-06-01 Epub Date: 2023-12-05 DOI:10.1089/ten.TEB.2023.0208
Sanjeev Rampam, Jonathan M Carnino, Boyuan Xiao, Rehan R Khan, Steven Miyawaki, Graham S Goh
{"title":"细胞外小泡:肌肉骨骼疾病的一个新的临床机会。","authors":"Sanjeev Rampam, Jonathan M Carnino, Boyuan Xiao, Rehan R Khan, Steven Miyawaki, Graham S Goh","doi":"10.1089/ten.TEB.2023.0208","DOIUrl":null,"url":null,"abstract":"<p><p>Extracellular vesicles (EVs) are important mediators of cell-to-cell communication in the extracellular space. These membranous nanoparticles carry various molecules, often referred to as \"cargo,\" which are delivered to nearby target cells. In the past decade, developments in nanotechnology have allowed for various new laboratory techniques for the increased utilization of EVs in cellular and animal studies. Such techniques have evolved for the isolation, characterization, and delivery of EVs to biological tissues. This emerging technology has immense clinical potential for both diagnostic and therapeutic applications. Various EV cargo molecules, including DNA, RNA, and proteins, can act as pathological biomarkers. Furthermore, EVs derived from certain cell sources have shown therapeutic benefit in certain pathologies. In addition to their native therapeutic benefit, EVs can be engineered to carry and selectively deliver therapeutic agents. While EVs have gained increasing interest in various pathologies, few studies have compiled their clinical potential in musculoskeletal pathologies. To bridge this gap, we present an overview of EVs, introduce current laboratory preparation techniques, and outline the most recent literature regarding the potential therapeutic applications of EVs in musculoskeletal pathologies.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extracellular Vesicles: An Emerging Clinical Opportunity in Musculoskeletal Disease.\",\"authors\":\"Sanjeev Rampam, Jonathan M Carnino, Boyuan Xiao, Rehan R Khan, Steven Miyawaki, Graham S Goh\",\"doi\":\"10.1089/ten.TEB.2023.0208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Extracellular vesicles (EVs) are important mediators of cell-to-cell communication in the extracellular space. These membranous nanoparticles carry various molecules, often referred to as \\\"cargo,\\\" which are delivered to nearby target cells. In the past decade, developments in nanotechnology have allowed for various new laboratory techniques for the increased utilization of EVs in cellular and animal studies. Such techniques have evolved for the isolation, characterization, and delivery of EVs to biological tissues. This emerging technology has immense clinical potential for both diagnostic and therapeutic applications. Various EV cargo molecules, including DNA, RNA, and proteins, can act as pathological biomarkers. Furthermore, EVs derived from certain cell sources have shown therapeutic benefit in certain pathologies. In addition to their native therapeutic benefit, EVs can be engineered to carry and selectively deliver therapeutic agents. While EVs have gained increasing interest in various pathologies, few studies have compiled their clinical potential in musculoskeletal pathologies. To bridge this gap, we present an overview of EVs, introduce current laboratory preparation techniques, and outline the most recent literature regarding the potential therapeutic applications of EVs in musculoskeletal pathologies.</p>\",\"PeriodicalId\":23134,\"journal\":{\"name\":\"Tissue Engineering. Part B, Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue Engineering. Part B, Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.TEB.2023.0208\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering. Part B, Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEB.2023.0208","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

细胞外小泡是细胞外空间中细胞间通讯的重要介质。这些膜状纳米颗粒携带各种分子,通常被称为“货物”,这些分子被输送到附近的靶细胞。在过去的十年里,纳米技术的发展使得各种新的实验室技术能够在细胞和动物研究中更多地利用细胞外囊泡。这种技术已经发展用于分离、表征细胞外小泡并将其递送到生物组织。这项新兴技术在诊断和治疗应用方面都具有巨大的临床潜力。包括DNA、RNA和蛋白质在内的各种细胞外囊泡货物分子可以作为病理生物标志物。此外,来源于某些细胞源的细胞外小泡在某些病理中显示出治疗益处。除了天然的治疗益处外,细胞外小泡还可以被改造为携带和选择性递送治疗剂。虽然细胞外小泡在各种病理学中越来越引起人们的兴趣,但很少有研究表明它们在肌肉骨骼病理学中的临床潜力。为了弥补这一差距,我们对细胞外小泡进行了概述,介绍了当前的实验室制备技术,并概述了关于细胞外小囊泡在肌肉骨骼病理学中潜在治疗应用的最新文献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extracellular Vesicles: An Emerging Clinical Opportunity in Musculoskeletal Disease.

Extracellular vesicles (EVs) are important mediators of cell-to-cell communication in the extracellular space. These membranous nanoparticles carry various molecules, often referred to as "cargo," which are delivered to nearby target cells. In the past decade, developments in nanotechnology have allowed for various new laboratory techniques for the increased utilization of EVs in cellular and animal studies. Such techniques have evolved for the isolation, characterization, and delivery of EVs to biological tissues. This emerging technology has immense clinical potential for both diagnostic and therapeutic applications. Various EV cargo molecules, including DNA, RNA, and proteins, can act as pathological biomarkers. Furthermore, EVs derived from certain cell sources have shown therapeutic benefit in certain pathologies. In addition to their native therapeutic benefit, EVs can be engineered to carry and selectively deliver therapeutic agents. While EVs have gained increasing interest in various pathologies, few studies have compiled their clinical potential in musculoskeletal pathologies. To bridge this gap, we present an overview of EVs, introduce current laboratory preparation techniques, and outline the most recent literature regarding the potential therapeutic applications of EVs in musculoskeletal pathologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tissue Engineering. Part B, Reviews
Tissue Engineering. Part B, Reviews Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
12.80
自引率
1.60%
发文量
150
期刊介绍: Tissue Engineering Reviews (Part B) meets the urgent need for high-quality review articles by presenting critical literature overviews and systematic summaries of research within the field to assess the current standing and future directions within relevant areas and technologies. Part B publishes bi-monthly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信