Emma Chen, Shvetank Prakash, Vijay Janapa Reddi, David Kim, Pranav Rajpurkar
{"title":"将人工智能用于临床护理与持续治疗监测相结合的框架。","authors":"Emma Chen, Shvetank Prakash, Vijay Janapa Reddi, David Kim, Pranav Rajpurkar","doi":"10.1038/s41551-023-01115-0","DOIUrl":null,"url":null,"abstract":"<p><p>The complex relationships between continuously monitored health signals and therapeutic regimens can be modelled via machine learning. However, the clinical implementation of the models will require changes to clinical workflows. Here we outline ClinAIOps ('clinical artificial-intelligence operations'), a framework that integrates continuous therapeutic monitoring and the development of artificial intelligence (AI) for clinical care. ClinAIOps leverages three feedback loops to enable the patient to make treatment adjustments using AI outputs, the clinician to oversee patient progress with AI assistance, and the AI developer to receive continuous feedback from both the patient and the clinician. We lay out the central challenges and opportunities in the deployment of ClinAIOps by means of examples of its application in the management of blood pressure, diabetes and Parkinson's disease. By enabling more frequent and accurate measurements of a patient's health and more timely adjustments to their treatment, ClinAIOps may substantially improve patient outcomes.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":" ","pages":"445-454"},"PeriodicalIF":26.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A framework for integrating artificial intelligence for clinical care with continuous therapeutic monitoring.\",\"authors\":\"Emma Chen, Shvetank Prakash, Vijay Janapa Reddi, David Kim, Pranav Rajpurkar\",\"doi\":\"10.1038/s41551-023-01115-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The complex relationships between continuously monitored health signals and therapeutic regimens can be modelled via machine learning. However, the clinical implementation of the models will require changes to clinical workflows. Here we outline ClinAIOps ('clinical artificial-intelligence operations'), a framework that integrates continuous therapeutic monitoring and the development of artificial intelligence (AI) for clinical care. ClinAIOps leverages three feedback loops to enable the patient to make treatment adjustments using AI outputs, the clinician to oversee patient progress with AI assistance, and the AI developer to receive continuous feedback from both the patient and the clinician. We lay out the central challenges and opportunities in the deployment of ClinAIOps by means of examples of its application in the management of blood pressure, diabetes and Parkinson's disease. By enabling more frequent and accurate measurements of a patient's health and more timely adjustments to their treatment, ClinAIOps may substantially improve patient outcomes.</p>\",\"PeriodicalId\":19063,\"journal\":{\"name\":\"Nature Biomedical Engineering\",\"volume\":\" \",\"pages\":\"445-454\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41551-023-01115-0\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-023-01115-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A framework for integrating artificial intelligence for clinical care with continuous therapeutic monitoring.
The complex relationships between continuously monitored health signals and therapeutic regimens can be modelled via machine learning. However, the clinical implementation of the models will require changes to clinical workflows. Here we outline ClinAIOps ('clinical artificial-intelligence operations'), a framework that integrates continuous therapeutic monitoring and the development of artificial intelligence (AI) for clinical care. ClinAIOps leverages three feedback loops to enable the patient to make treatment adjustments using AI outputs, the clinician to oversee patient progress with AI assistance, and the AI developer to receive continuous feedback from both the patient and the clinician. We lay out the central challenges and opportunities in the deployment of ClinAIOps by means of examples of its application in the management of blood pressure, diabetes and Parkinson's disease. By enabling more frequent and accurate measurements of a patient's health and more timely adjustments to their treatment, ClinAIOps may substantially improve patient outcomes.
期刊介绍:
Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.