Menno D. Stellingwerff, Murtadha L. Al-Saady, Kwok-Shing Chan, Adam Dvorak, José P. Marques, Shannon Kolind, Stefan D. Roosendaal, Nicole I. Wolf, Frederik Barkhof, Marjo S. van der Knaap, Petra J. W. Pouwels
{"title":"多种定量磁共振方法在遗传性脑白质疾病中的适用性。","authors":"Menno D. Stellingwerff, Murtadha L. Al-Saady, Kwok-Shing Chan, Adam Dvorak, José P. Marques, Shannon Kolind, Stefan D. Roosendaal, Nicole I. Wolf, Frederik Barkhof, Marjo S. van der Knaap, Petra J. W. Pouwels","doi":"10.1111/jon.13167","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background and purpose</h3>\n \n <p>Magnetic resonance imaging (MRI) measures of tissue microstructure are important for monitoring brain white matter (WM) disorders like leukodystrophies and multiple sclerosis. They should be sensitive to underlying pathological changes. Three whole-brain isotropic quantitative methods were applied and compared within a cohort of controls and leukodystrophy patients: two novel myelin water imaging (MWI) techniques (multi-compartment relaxometry diffusion-informed MWI: MCR-DIMWI, and multi-echo T2 relaxation imaging with compressed sensing: METRICS) and neurite orientation dispersion and density imaging (NODDI).</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>For 9 patients with different leukodystrophies (age range 0.4-62.4 years) and 15 control subjects (2.3-61.3 years), T1-weighted MRI, fluid-attenuated inversion recovery, multi-echo gradient echo with variable flip angles, METRICS, and multi-shell diffusion-weighted imaging were acquired on 3 Tesla. MCR-DIMWI, METRICS, NODDI, and quality control measures were extracted to evaluate differences between patients and controls in WM and deep gray matter (GM) regions of interest (ROIs). Pearson correlations, effect size calculations, and multi-level analyses were performed.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>MCR-DIMWI and METRICS-derived myelin water fractions (MWFs) were lower and relaxation times were higher in patients than in controls. Effect sizes of MWF values and relaxation times were large for both techniques. Differences between patients and controls were more pronounced in WM ROIs than in deep GM. MCR-DIMWI-MWFs were more homogeneous within ROIs and more bilaterally symmetrical than METRICS-MWFs. The neurite density index was more sensitive in detecting differences between patients and controls than fractional anisotropy. Most measures obtained from MCR-DIMWI, METRICS, NODDI, and diffusion tensor imaging correlated strongly with each other.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>This proof-of-concept study shows that MCR-DIMWI, METRICS, and NODDI are sensitive techniques to detect changes in tissue microstructure in WM disorders.</p>\n </section>\n </div>","PeriodicalId":16399,"journal":{"name":"Journal of Neuroimaging","volume":"34 1","pages":"61-77"},"PeriodicalIF":2.3000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jon.13167","citationCount":"0","resultStr":"{\"title\":\"Applicability of multiple quantitative magnetic resonance methods in genetic brain white matter disorders\",\"authors\":\"Menno D. Stellingwerff, Murtadha L. Al-Saady, Kwok-Shing Chan, Adam Dvorak, José P. Marques, Shannon Kolind, Stefan D. Roosendaal, Nicole I. Wolf, Frederik Barkhof, Marjo S. van der Knaap, Petra J. W. Pouwels\",\"doi\":\"10.1111/jon.13167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background and purpose</h3>\\n \\n <p>Magnetic resonance imaging (MRI) measures of tissue microstructure are important for monitoring brain white matter (WM) disorders like leukodystrophies and multiple sclerosis. They should be sensitive to underlying pathological changes. Three whole-brain isotropic quantitative methods were applied and compared within a cohort of controls and leukodystrophy patients: two novel myelin water imaging (MWI) techniques (multi-compartment relaxometry diffusion-informed MWI: MCR-DIMWI, and multi-echo T2 relaxation imaging with compressed sensing: METRICS) and neurite orientation dispersion and density imaging (NODDI).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>For 9 patients with different leukodystrophies (age range 0.4-62.4 years) and 15 control subjects (2.3-61.3 years), T1-weighted MRI, fluid-attenuated inversion recovery, multi-echo gradient echo with variable flip angles, METRICS, and multi-shell diffusion-weighted imaging were acquired on 3 Tesla. MCR-DIMWI, METRICS, NODDI, and quality control measures were extracted to evaluate differences between patients and controls in WM and deep gray matter (GM) regions of interest (ROIs). Pearson correlations, effect size calculations, and multi-level analyses were performed.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>MCR-DIMWI and METRICS-derived myelin water fractions (MWFs) were lower and relaxation times were higher in patients than in controls. Effect sizes of MWF values and relaxation times were large for both techniques. Differences between patients and controls were more pronounced in WM ROIs than in deep GM. MCR-DIMWI-MWFs were more homogeneous within ROIs and more bilaterally symmetrical than METRICS-MWFs. The neurite density index was more sensitive in detecting differences between patients and controls than fractional anisotropy. Most measures obtained from MCR-DIMWI, METRICS, NODDI, and diffusion tensor imaging correlated strongly with each other.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>This proof-of-concept study shows that MCR-DIMWI, METRICS, and NODDI are sensitive techniques to detect changes in tissue microstructure in WM disorders.</p>\\n </section>\\n </div>\",\"PeriodicalId\":16399,\"journal\":{\"name\":\"Journal of Neuroimaging\",\"volume\":\"34 1\",\"pages\":\"61-77\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jon.13167\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroimaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jon.13167\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroimaging","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jon.13167","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Applicability of multiple quantitative magnetic resonance methods in genetic brain white matter disorders
Background and purpose
Magnetic resonance imaging (MRI) measures of tissue microstructure are important for monitoring brain white matter (WM) disorders like leukodystrophies and multiple sclerosis. They should be sensitive to underlying pathological changes. Three whole-brain isotropic quantitative methods were applied and compared within a cohort of controls and leukodystrophy patients: two novel myelin water imaging (MWI) techniques (multi-compartment relaxometry diffusion-informed MWI: MCR-DIMWI, and multi-echo T2 relaxation imaging with compressed sensing: METRICS) and neurite orientation dispersion and density imaging (NODDI).
Methods
For 9 patients with different leukodystrophies (age range 0.4-62.4 years) and 15 control subjects (2.3-61.3 years), T1-weighted MRI, fluid-attenuated inversion recovery, multi-echo gradient echo with variable flip angles, METRICS, and multi-shell diffusion-weighted imaging were acquired on 3 Tesla. MCR-DIMWI, METRICS, NODDI, and quality control measures were extracted to evaluate differences between patients and controls in WM and deep gray matter (GM) regions of interest (ROIs). Pearson correlations, effect size calculations, and multi-level analyses were performed.
Results
MCR-DIMWI and METRICS-derived myelin water fractions (MWFs) were lower and relaxation times were higher in patients than in controls. Effect sizes of MWF values and relaxation times were large for both techniques. Differences between patients and controls were more pronounced in WM ROIs than in deep GM. MCR-DIMWI-MWFs were more homogeneous within ROIs and more bilaterally symmetrical than METRICS-MWFs. The neurite density index was more sensitive in detecting differences between patients and controls than fractional anisotropy. Most measures obtained from MCR-DIMWI, METRICS, NODDI, and diffusion tensor imaging correlated strongly with each other.
Conclusion
This proof-of-concept study shows that MCR-DIMWI, METRICS, and NODDI are sensitive techniques to detect changes in tissue microstructure in WM disorders.
期刊介绍:
Start reading the Journal of Neuroimaging to learn the latest neurological imaging techniques. The peer-reviewed research is written in a practical clinical context, giving you the information you need on:
MRI
CT
Carotid Ultrasound and TCD
SPECT
PET
Endovascular Surgical Neuroradiology
Functional MRI
Xenon CT
and other new and upcoming neuroscientific modalities.The Journal of Neuroimaging addresses the full spectrum of human nervous system disease, including stroke, neoplasia, degenerating and demyelinating disease, epilepsy, tumors, lesions, infectious disease, cerebral vascular arterial diseases, toxic-metabolic disease, psychoses, dementias, heredo-familial disease, and trauma.Offering original research, review articles, case reports, neuroimaging CPCs, and evaluations of instruments and technology relevant to the nervous system, the Journal of Neuroimaging focuses on useful clinical developments and applications, tested techniques and interpretations, patient care, diagnostics, and therapeutics. Start reading today!