{"title":"相互作用分析提示II类反式激活因子(CIITA)在抑郁症和其他神经炎性疾病中的作用。","authors":"Kishore Nagasubramanian, Krishnakant Gupta","doi":"10.1080/00207454.2023.2279502","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Inappropriate inflammatory responses within the nervous system (neuroinflammation) have been implicated in several neurological conditions. Class II transactivator (CIITA), a principal regulator of the major histocompatibility complex II (MHCII), is known to play essential roles in inflammation. Hence, CIITA and its interactors could be potentially involved in multiple neurological disorders. However, the molecular mechanisms underlying CIITA-mediated neuroinflammation (NI) are yet to be understood.</p><p><strong>Materials and methods: </strong>In this regard, we analyzed the potential involvement of CIITA and its interactome in the regulation of neuroinflammation. In the present study, using various computational tools, we aimed (1) to identify NI-related proteins, (2) to filter the critical interactors in the CIITA-NI network, and (3) to analyze the protein-disease interactions and the associated molecular pathways through which CIITA could influence neuroinflammation.</p><p><strong>Results: </strong>CIITA was found to interact with P T GS2, GSK3B, and NR3C1 and may influence depressive disorders. Further, the IL4/IL13 pathway was found to be potentially underlying the CIITA-interactomemediated effects on neurological disorders. Moreover, CIITA was found to be connected to genes associated with depressive disorder through IL4, wherein CIITA was found to be potentially involved in depressive disorders through IL-4/IL-13 and hippo pathways. However, the present study is based on the existing data on protein interactomes and could be re-evaluated as newer interactions are discovered. Also, the functional mechanisms of CIITA's roles in neuroinflammation must be evaluated further.</p><p><strong>Conclusion: </strong>Notwithstanding these limitations, the results presented here, could form a basis for further experimental studies to assess CIITA as a potential therapeutic target in managing depression and other neuroinflammatory disorders.</p>","PeriodicalId":14161,"journal":{"name":"International Journal of Neuroscience","volume":" ","pages":"1153-1171"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interactome analysis implicates class II transactivator (CIITA) in depression and other neuroinflammatory disorders.\",\"authors\":\"Kishore Nagasubramanian, Krishnakant Gupta\",\"doi\":\"10.1080/00207454.2023.2279502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Inappropriate inflammatory responses within the nervous system (neuroinflammation) have been implicated in several neurological conditions. Class II transactivator (CIITA), a principal regulator of the major histocompatibility complex II (MHCII), is known to play essential roles in inflammation. Hence, CIITA and its interactors could be potentially involved in multiple neurological disorders. However, the molecular mechanisms underlying CIITA-mediated neuroinflammation (NI) are yet to be understood.</p><p><strong>Materials and methods: </strong>In this regard, we analyzed the potential involvement of CIITA and its interactome in the regulation of neuroinflammation. In the present study, using various computational tools, we aimed (1) to identify NI-related proteins, (2) to filter the critical interactors in the CIITA-NI network, and (3) to analyze the protein-disease interactions and the associated molecular pathways through which CIITA could influence neuroinflammation.</p><p><strong>Results: </strong>CIITA was found to interact with P T GS2, GSK3B, and NR3C1 and may influence depressive disorders. Further, the IL4/IL13 pathway was found to be potentially underlying the CIITA-interactomemediated effects on neurological disorders. Moreover, CIITA was found to be connected to genes associated with depressive disorder through IL4, wherein CIITA was found to be potentially involved in depressive disorders through IL-4/IL-13 and hippo pathways. However, the present study is based on the existing data on protein interactomes and could be re-evaluated as newer interactions are discovered. Also, the functional mechanisms of CIITA's roles in neuroinflammation must be evaluated further.</p><p><strong>Conclusion: </strong>Notwithstanding these limitations, the results presented here, could form a basis for further experimental studies to assess CIITA as a potential therapeutic target in managing depression and other neuroinflammatory disorders.</p>\",\"PeriodicalId\":14161,\"journal\":{\"name\":\"International Journal of Neuroscience\",\"volume\":\" \",\"pages\":\"1153-1171\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/00207454.2023.2279502\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/00207454.2023.2279502","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/17 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Interactome analysis implicates class II transactivator (CIITA) in depression and other neuroinflammatory disorders.
Purpose: Inappropriate inflammatory responses within the nervous system (neuroinflammation) have been implicated in several neurological conditions. Class II transactivator (CIITA), a principal regulator of the major histocompatibility complex II (MHCII), is known to play essential roles in inflammation. Hence, CIITA and its interactors could be potentially involved in multiple neurological disorders. However, the molecular mechanisms underlying CIITA-mediated neuroinflammation (NI) are yet to be understood.
Materials and methods: In this regard, we analyzed the potential involvement of CIITA and its interactome in the regulation of neuroinflammation. In the present study, using various computational tools, we aimed (1) to identify NI-related proteins, (2) to filter the critical interactors in the CIITA-NI network, and (3) to analyze the protein-disease interactions and the associated molecular pathways through which CIITA could influence neuroinflammation.
Results: CIITA was found to interact with P T GS2, GSK3B, and NR3C1 and may influence depressive disorders. Further, the IL4/IL13 pathway was found to be potentially underlying the CIITA-interactomemediated effects on neurological disorders. Moreover, CIITA was found to be connected to genes associated with depressive disorder through IL4, wherein CIITA was found to be potentially involved in depressive disorders through IL-4/IL-13 and hippo pathways. However, the present study is based on the existing data on protein interactomes and could be re-evaluated as newer interactions are discovered. Also, the functional mechanisms of CIITA's roles in neuroinflammation must be evaluated further.
Conclusion: Notwithstanding these limitations, the results presented here, could form a basis for further experimental studies to assess CIITA as a potential therapeutic target in managing depression and other neuroinflammatory disorders.
期刊介绍:
The International Journal of Neuroscience publishes original research articles, reviews, brief scientific reports, case studies, letters to the editor and book reviews concerned with problems of the nervous system and related clinical studies, epidemiology, neuropathology, medical and surgical treatment options and outcomes, neuropsychology and other topics related to the research and care of persons with neurologic disorders. The focus of the journal is clinical and transitional research. Topics covered include but are not limited to: ALS, ataxia, autism, brain tumors, child neurology, demyelinating diseases, epilepsy, genetics, headache, lysosomal storage disease, mitochondrial dysfunction, movement disorders, multiple sclerosis, myopathy, neurodegenerative diseases, neuromuscular disorders, neuropharmacology, neuropsychiatry, neuropsychology, pain, sleep disorders, stroke, and other areas related to the neurosciences.