{"title":"质子通道的超越方面。","authors":"Thomas E DeCoursey","doi":"10.1146/annurev-physiol-042222-023242","DOIUrl":null,"url":null,"abstract":"<p><p>A handful of biological proton-selective ion channels exist. Some open at positive or negative membrane potentials, others open at low or high pH, and some are light activated. This review focuses on common features that result from the unique properties of protons. Proton conduction through water or proteins differs qualitatively from that of all other ions. Extraordinary proton selectivity is needed to ensure that protons permeate and other ions do not. Proton selectivity arises from a proton pathway comprising a hydrogen-bonded chain that typically includes at least one titratable amino acid side chain. The enormously diverse functions of proton channels in disparate regions of the phylogenetic tree can be summarized by considering the chemical and electrical consequences of proton flux across membranes. This review discusses examples of cells in which proton efflux serves to increase pH<sub>i</sub>, decrease pH<sub>o</sub>, control the membrane potential, generate action potentials, or compensate transmembrane movement of electrical charge.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":null,"pages":null},"PeriodicalIF":15.7000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10938948/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transcendent Aspects of Proton Channels.\",\"authors\":\"Thomas E DeCoursey\",\"doi\":\"10.1146/annurev-physiol-042222-023242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A handful of biological proton-selective ion channels exist. Some open at positive or negative membrane potentials, others open at low or high pH, and some are light activated. This review focuses on common features that result from the unique properties of protons. Proton conduction through water or proteins differs qualitatively from that of all other ions. Extraordinary proton selectivity is needed to ensure that protons permeate and other ions do not. Proton selectivity arises from a proton pathway comprising a hydrogen-bonded chain that typically includes at least one titratable amino acid side chain. The enormously diverse functions of proton channels in disparate regions of the phylogenetic tree can be summarized by considering the chemical and electrical consequences of proton flux across membranes. This review discusses examples of cells in which proton efflux serves to increase pH<sub>i</sub>, decrease pH<sub>o</sub>, control the membrane potential, generate action potentials, or compensate transmembrane movement of electrical charge.</p>\",\"PeriodicalId\":8196,\"journal\":{\"name\":\"Annual review of physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10938948/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-physiol-042222-023242\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-physiol-042222-023242","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
A handful of biological proton-selective ion channels exist. Some open at positive or negative membrane potentials, others open at low or high pH, and some are light activated. This review focuses on common features that result from the unique properties of protons. Proton conduction through water or proteins differs qualitatively from that of all other ions. Extraordinary proton selectivity is needed to ensure that protons permeate and other ions do not. Proton selectivity arises from a proton pathway comprising a hydrogen-bonded chain that typically includes at least one titratable amino acid side chain. The enormously diverse functions of proton channels in disparate regions of the phylogenetic tree can be summarized by considering the chemical and electrical consequences of proton flux across membranes. This review discusses examples of cells in which proton efflux serves to increase pHi, decrease pHo, control the membrane potential, generate action potentials, or compensate transmembrane movement of electrical charge.
期刊介绍:
Since 1939, the Annual Review of Physiology has been highlighting significant developments in animal physiology. The journal covers diverse areas, including cardiovascular physiology, cell physiology, ecological, evolutionary, and comparative physiology, endocrinology, gastrointestinal physiology, neurophysiology, renal and electrolyte physiology, respiratory physiology, and special topics.