{"title":"二氢山奈酚减轻LPS诱导的WI-38细胞炎症和凋亡。","authors":"Qiao Wang, Liwen Zhang, Ping Pang","doi":"10.15586/aei.v51i6.971","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Globally, pneumonia has been associated as a primary cause of mortality in children aged less than 5 years. Dihydrokaempferol (DHK) has been proposed for being correlated with the process of various diseases. Nevertheless, whether DHK has a role in the progression of infantile pneumonia remains unclear. This study aimed at exploring whether DHK was involved in the progression of infantile pneumonia.</p><p><strong>Methods: </strong>Human fibroblast cells WI-38 were treated with lipopolysaccharide (LPS). The viability of WI-38 cells was measured via Cell counting kit-8. Reverse transcription-quantitative polymerase chain reaction was used to evaluate the levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α). Western blot analysis revealed the protein levels of IL-1β, IL-6, TNF-α, Bax, and cleaved-caspase 3. Flow cytometry was applied for exploring the apoptosis of WI-38 cells. The concentrations of IL-1β, IL-6, and TNF-α were assessed via enzyme-linked-immunosorbent serologic assay.</p><p><strong>Results: </strong>DHK modulated the viability of WI-38 cells in infantile pneumonia. Furthermore, we identified that DHK treatment inversely changed LPS induction-mediated elevation on the levels of inflammation biomarkers. Besides, DHK counteracted LPS-induced production of <i>reactive oxygen species</i> (ROS) in WI-38 cells. DHK also decreased LPS-induced elevation of WI-38 cells apoptosis and mediated the levels of apoptosis-associated indexes. Moreover, modulating sirtuin-1 (SIRT1) protein level was lowered by the induction of LPS, and was reversed by DHK treatment. In addition, DHK counteracted LPS induction-mediated elevation of p-p65 and phosphorylated inhibitor of nuclear factor kappa-B kinase subunit alpha (p-IκBα) protein levels.</p><p><strong>Conclusion: </strong>DHK alleviated LPS-induced WI-38 cells inflammation injury in infantile pneumonia through SIRT1/NF-κB pathway. The results shed light on the implications of DHK on the prevention and treatment of infantile pneumonia.</p>","PeriodicalId":7536,"journal":{"name":"Allergologia et immunopathologia","volume":"51 6","pages":"23-29"},"PeriodicalIF":2.5000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dihydrokaempferol attenuates LPS-induced inflammation and apoptosis in WI-38 cells.\",\"authors\":\"Qiao Wang, Liwen Zhang, Ping Pang\",\"doi\":\"10.15586/aei.v51i6.971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Globally, pneumonia has been associated as a primary cause of mortality in children aged less than 5 years. Dihydrokaempferol (DHK) has been proposed for being correlated with the process of various diseases. Nevertheless, whether DHK has a role in the progression of infantile pneumonia remains unclear. This study aimed at exploring whether DHK was involved in the progression of infantile pneumonia.</p><p><strong>Methods: </strong>Human fibroblast cells WI-38 were treated with lipopolysaccharide (LPS). The viability of WI-38 cells was measured via Cell counting kit-8. Reverse transcription-quantitative polymerase chain reaction was used to evaluate the levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α). Western blot analysis revealed the protein levels of IL-1β, IL-6, TNF-α, Bax, and cleaved-caspase 3. Flow cytometry was applied for exploring the apoptosis of WI-38 cells. The concentrations of IL-1β, IL-6, and TNF-α were assessed via enzyme-linked-immunosorbent serologic assay.</p><p><strong>Results: </strong>DHK modulated the viability of WI-38 cells in infantile pneumonia. Furthermore, we identified that DHK treatment inversely changed LPS induction-mediated elevation on the levels of inflammation biomarkers. Besides, DHK counteracted LPS-induced production of <i>reactive oxygen species</i> (ROS) in WI-38 cells. DHK also decreased LPS-induced elevation of WI-38 cells apoptosis and mediated the levels of apoptosis-associated indexes. Moreover, modulating sirtuin-1 (SIRT1) protein level was lowered by the induction of LPS, and was reversed by DHK treatment. In addition, DHK counteracted LPS induction-mediated elevation of p-p65 and phosphorylated inhibitor of nuclear factor kappa-B kinase subunit alpha (p-IκBα) protein levels.</p><p><strong>Conclusion: </strong>DHK alleviated LPS-induced WI-38 cells inflammation injury in infantile pneumonia through SIRT1/NF-κB pathway. The results shed light on the implications of DHK on the prevention and treatment of infantile pneumonia.</p>\",\"PeriodicalId\":7536,\"journal\":{\"name\":\"Allergologia et immunopathologia\",\"volume\":\"51 6\",\"pages\":\"23-29\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Allergologia et immunopathologia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.15586/aei.v51i6.971\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"ALLERGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Allergologia et immunopathologia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.15586/aei.v51i6.971","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ALLERGY","Score":null,"Total":0}
Dihydrokaempferol attenuates LPS-induced inflammation and apoptosis in WI-38 cells.
Background: Globally, pneumonia has been associated as a primary cause of mortality in children aged less than 5 years. Dihydrokaempferol (DHK) has been proposed for being correlated with the process of various diseases. Nevertheless, whether DHK has a role in the progression of infantile pneumonia remains unclear. This study aimed at exploring whether DHK was involved in the progression of infantile pneumonia.
Methods: Human fibroblast cells WI-38 were treated with lipopolysaccharide (LPS). The viability of WI-38 cells was measured via Cell counting kit-8. Reverse transcription-quantitative polymerase chain reaction was used to evaluate the levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α). Western blot analysis revealed the protein levels of IL-1β, IL-6, TNF-α, Bax, and cleaved-caspase 3. Flow cytometry was applied for exploring the apoptosis of WI-38 cells. The concentrations of IL-1β, IL-6, and TNF-α were assessed via enzyme-linked-immunosorbent serologic assay.
Results: DHK modulated the viability of WI-38 cells in infantile pneumonia. Furthermore, we identified that DHK treatment inversely changed LPS induction-mediated elevation on the levels of inflammation biomarkers. Besides, DHK counteracted LPS-induced production of reactive oxygen species (ROS) in WI-38 cells. DHK also decreased LPS-induced elevation of WI-38 cells apoptosis and mediated the levels of apoptosis-associated indexes. Moreover, modulating sirtuin-1 (SIRT1) protein level was lowered by the induction of LPS, and was reversed by DHK treatment. In addition, DHK counteracted LPS induction-mediated elevation of p-p65 and phosphorylated inhibitor of nuclear factor kappa-B kinase subunit alpha (p-IκBα) protein levels.
Conclusion: DHK alleviated LPS-induced WI-38 cells inflammation injury in infantile pneumonia through SIRT1/NF-κB pathway. The results shed light on the implications of DHK on the prevention and treatment of infantile pneumonia.
期刊介绍:
Founded in 1972 by Professor A. Oehling, Allergologia et Immunopathologia is a forum for those working in the field of pediatric asthma, allergy and immunology. Manuscripts related to clinical, epidemiological and experimental allergy and immunopathology related to childhood will be considered for publication. Allergologia et Immunopathologia is the official journal of the Spanish Society of Pediatric Allergy and Clinical Immunology (SEICAP) and also of the Latin American Society of Immunodeficiencies (LASID). It has and independent international Editorial Committee which submits received papers for peer-reviewing by international experts. The journal accepts original and review articles from all over the world, together with consensus statements from the aforementioned societies. Occasionally, the opinion of an expert on a burning topic is published in the "Point of View" section. Letters to the Editor on previously published papers are welcomed. Allergologia et Immunopathologia publishes 6 issues per year and is included in the major databases such as Pubmed, Scopus, Web of Knowledge, etc.