采用提高溶解度的筛选设计,通过喷雾干燥技术开发奥氮平固体分散体。

IF 3.4 Q2 CHEMISTRY, MEDICINAL
ADMET and DMPK Pub Date : 2023-10-06 eCollection Date: 2023-01-01 DOI:10.5599/admet.1998
Leena Patil, Umakant Verma, Rahul Rajput, Pritam Patil, Aniruddha Chaterjee, Jitendra Naik
{"title":"采用提高溶解度的筛选设计,通过喷雾干燥技术开发奥氮平固体分散体。","authors":"Leena Patil, Umakant Verma, Rahul Rajput, Pritam Patil, Aniruddha Chaterjee, Jitendra Naik","doi":"10.5599/admet.1998","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Olanzapine (OLZ) is a psychotropic class drug commonly used to treat schizophrenia, bipolar disorder, and acute manic episodes. It has less water solubility, resulting in a slow dissolution rate and oral bioavailability. Therefore, the development in oral dosage forms is required to enhance the drug solubility.</p><p><strong>Method: </strong>The solid dispersion of olanzapine is prepared by spray drying technique. The solution of polyvinylpyrrolidone K-30 (PVP K-30), mono amino glycyrrhizinate pentahydrate (GLY), OLZ and silicon dioxide were dissolved in distilled water and ethanol and spray dried to get the solid dispersion. Solid dispersion was characterized for surface morphology, solubility, encapsulation efficiency (EE), X-ray diffraction (X-RD), Differential Scanning Calorimeter (DSC) and drug-polymer interaction by Fourier transforms infrared spectroscopy.</p><p><strong>Results: </strong>The amorphous nature of the drug's incorporation in solid dispersion was confirmed by X-RD analysis. Prepared solid dispersion showed higher solubility, 11.51 mg, than pure OLZ (0.983 mg ml<sup>-1</sup>), while the range of EE was found to be between 64 to 90 %.</p><p><strong>Conclusions: </strong>The solubility and dissolution rate of the OLZ can effectively increase by spray-dried solid dispersion. Plackett-Burman screening design plays a vital role in understanding the effect of independent variables on EE and solubility.</p>","PeriodicalId":7259,"journal":{"name":"ADMET and DMPK","volume":"11 4","pages":"615-627"},"PeriodicalIF":3.4000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10626510/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development of olanzapine solid dispersion by spray drying technique using screening design for solubility enhancement.\",\"authors\":\"Leena Patil, Umakant Verma, Rahul Rajput, Pritam Patil, Aniruddha Chaterjee, Jitendra Naik\",\"doi\":\"10.5599/admet.1998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Olanzapine (OLZ) is a psychotropic class drug commonly used to treat schizophrenia, bipolar disorder, and acute manic episodes. It has less water solubility, resulting in a slow dissolution rate and oral bioavailability. Therefore, the development in oral dosage forms is required to enhance the drug solubility.</p><p><strong>Method: </strong>The solid dispersion of olanzapine is prepared by spray drying technique. The solution of polyvinylpyrrolidone K-30 (PVP K-30), mono amino glycyrrhizinate pentahydrate (GLY), OLZ and silicon dioxide were dissolved in distilled water and ethanol and spray dried to get the solid dispersion. Solid dispersion was characterized for surface morphology, solubility, encapsulation efficiency (EE), X-ray diffraction (X-RD), Differential Scanning Calorimeter (DSC) and drug-polymer interaction by Fourier transforms infrared spectroscopy.</p><p><strong>Results: </strong>The amorphous nature of the drug's incorporation in solid dispersion was confirmed by X-RD analysis. Prepared solid dispersion showed higher solubility, 11.51 mg, than pure OLZ (0.983 mg ml<sup>-1</sup>), while the range of EE was found to be between 64 to 90 %.</p><p><strong>Conclusions: </strong>The solubility and dissolution rate of the OLZ can effectively increase by spray-dried solid dispersion. Plackett-Burman screening design plays a vital role in understanding the effect of independent variables on EE and solubility.</p>\",\"PeriodicalId\":7259,\"journal\":{\"name\":\"ADMET and DMPK\",\"volume\":\"11 4\",\"pages\":\"615-627\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10626510/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ADMET and DMPK\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5599/admet.1998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ADMET and DMPK","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5599/admet.1998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

简介:奥氮平(OLZ)是一种精神类药物,常用于治疗精神分裂症、双相情感障碍和急性躁狂发作。它的水溶性较低,导致溶解速度慢,口服生物利用度低。因此,需要开发口服剂型以提高药物溶解度。方法:采用喷雾干燥法制备奥氮平固体分散体。将聚乙烯吡咯烷酮K-30(PVP K-30)、单氨基甘草酸盐五水合物(GLY)、OLZ和二氧化硅的溶液溶解在蒸馏水和乙醇中,并喷雾干燥以获得固体分散体。通过傅立叶变换红外光谱对固体分散体的表面形态、溶解度、包封效率(EE)、X射线衍射(X-RD)、差示扫描量热仪(DSC)和药物-聚合物相互作用进行了表征。结果:X-RD分析证实了药物在固体分散体中的掺入是无定形的。所制备的固体分散体的溶解度为11.51mg,高于纯OLZ(0.983mg/ml-1),而EE的范围在64%至90%之间。结论:喷雾干燥固体分散体可以有效提高OLZ的溶解度和溶解速率。Plackett-Burman筛选设计在理解自变量对EE和溶解度的影响方面发挥着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Development of olanzapine solid dispersion by spray drying technique using screening design for solubility enhancement.

Development of olanzapine solid dispersion by spray drying technique using screening design for solubility enhancement.

Development of olanzapine solid dispersion by spray drying technique using screening design for solubility enhancement.

Development of olanzapine solid dispersion by spray drying technique using screening design for solubility enhancement.

Introduction: Olanzapine (OLZ) is a psychotropic class drug commonly used to treat schizophrenia, bipolar disorder, and acute manic episodes. It has less water solubility, resulting in a slow dissolution rate and oral bioavailability. Therefore, the development in oral dosage forms is required to enhance the drug solubility.

Method: The solid dispersion of olanzapine is prepared by spray drying technique. The solution of polyvinylpyrrolidone K-30 (PVP K-30), mono amino glycyrrhizinate pentahydrate (GLY), OLZ and silicon dioxide were dissolved in distilled water and ethanol and spray dried to get the solid dispersion. Solid dispersion was characterized for surface morphology, solubility, encapsulation efficiency (EE), X-ray diffraction (X-RD), Differential Scanning Calorimeter (DSC) and drug-polymer interaction by Fourier transforms infrared spectroscopy.

Results: The amorphous nature of the drug's incorporation in solid dispersion was confirmed by X-RD analysis. Prepared solid dispersion showed higher solubility, 11.51 mg, than pure OLZ (0.983 mg ml-1), while the range of EE was found to be between 64 to 90 %.

Conclusions: The solubility and dissolution rate of the OLZ can effectively increase by spray-dried solid dispersion. Plackett-Burman screening design plays a vital role in understanding the effect of independent variables on EE and solubility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ADMET and DMPK
ADMET and DMPK Multiple-
CiteScore
4.40
自引率
0.00%
发文量
22
审稿时长
4 weeks
期刊介绍: ADMET and DMPK is an open access journal devoted to the rapid dissemination of new and original scientific results in all areas of absorption, distribution, metabolism, excretion, toxicology and pharmacokinetics of drugs. ADMET and DMPK publishes the following types of contributions: - Original research papers - Feature articles - Review articles - Short communications and Notes - Letters to Editors - Book reviews The scope of the Journal involves, but is not limited to, the following areas: - physico-chemical properties of drugs and methods of their determination - drug permeabilities - drug absorption - drug-drug, drug-protein, drug-membrane and drug-DNA interactions - chemical stability and degradations of drugs - instrumental methods in ADMET - drug metablic processes - routes of administration and excretion of drug - pharmacokinetic/pharmacodynamic study - quantitative structure activity/property relationship - ADME/PK modelling - Toxicology screening - Transporter identification and study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信