Alankar Roy, Ishani Paul, Shreya Luharuka, Sujay Ray
{"title":"一种设计新型gp130抑制剂的硅支架跳跃方法:在癌症和新冠肺炎中的潜在治疗应用。","authors":"Alankar Roy, Ishani Paul, Shreya Luharuka, Sujay Ray","doi":"10.1007/s11030-023-10737-0","DOIUrl":null,"url":null,"abstract":"<p><p>An upregulation of the gp130-signalling cascade has been reported in multiple cancers, making gp130 an attractive target for the development of anticancer drugs. An inverted-funnel-like approach was utilised along with various structure-based drug designing strategies to discover and optimise novel potential inhibitors of gp130. The study resulted in the discovery of 2 ligands- 435 and 510, both of which exhibit a very high-binding affinity towards the gp130 D1 domain which controls cytokine recognition and interaction thus being involved in complexation. The two resulting complexes remained stable over time with the ligands maintaining a steady interaction with the target. This inference is drawn from their RMSD, R<sub>g</sub>, SASA and RMSF analysis. We also tested the protein folding patterns based on their principal component analysis, energy of surface and landscape. The leads also displayed a more favourable ADMET profile than their parent compounds. The two lead candidates show a better therapeutic profile in comparison to the two existing drugs- bazedoxifene and raloxifene. Both these potential leads can be addressed for their activity in-vitro and can be used as a potential anti-cancer treatment as well as to combat Covid-19 related cytokine storm.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An in-silico scaffold- hopping approach to design novel inhibitors against gp130: A potential therapeutic application in cancer and Covid-19.\",\"authors\":\"Alankar Roy, Ishani Paul, Shreya Luharuka, Sujay Ray\",\"doi\":\"10.1007/s11030-023-10737-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An upregulation of the gp130-signalling cascade has been reported in multiple cancers, making gp130 an attractive target for the development of anticancer drugs. An inverted-funnel-like approach was utilised along with various structure-based drug designing strategies to discover and optimise novel potential inhibitors of gp130. The study resulted in the discovery of 2 ligands- 435 and 510, both of which exhibit a very high-binding affinity towards the gp130 D1 domain which controls cytokine recognition and interaction thus being involved in complexation. The two resulting complexes remained stable over time with the ligands maintaining a steady interaction with the target. This inference is drawn from their RMSD, R<sub>g</sub>, SASA and RMSF analysis. We also tested the protein folding patterns based on their principal component analysis, energy of surface and landscape. The leads also displayed a more favourable ADMET profile than their parent compounds. The two lead candidates show a better therapeutic profile in comparison to the two existing drugs- bazedoxifene and raloxifene. Both these potential leads can be addressed for their activity in-vitro and can be used as a potential anti-cancer treatment as well as to combat Covid-19 related cytokine storm.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-023-10737-0\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-023-10737-0","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
An in-silico scaffold- hopping approach to design novel inhibitors against gp130: A potential therapeutic application in cancer and Covid-19.
An upregulation of the gp130-signalling cascade has been reported in multiple cancers, making gp130 an attractive target for the development of anticancer drugs. An inverted-funnel-like approach was utilised along with various structure-based drug designing strategies to discover and optimise novel potential inhibitors of gp130. The study resulted in the discovery of 2 ligands- 435 and 510, both of which exhibit a very high-binding affinity towards the gp130 D1 domain which controls cytokine recognition and interaction thus being involved in complexation. The two resulting complexes remained stable over time with the ligands maintaining a steady interaction with the target. This inference is drawn from their RMSD, Rg, SASA and RMSF analysis. We also tested the protein folding patterns based on their principal component analysis, energy of surface and landscape. The leads also displayed a more favourable ADMET profile than their parent compounds. The two lead candidates show a better therapeutic profile in comparison to the two existing drugs- bazedoxifene and raloxifene. Both these potential leads can be addressed for their activity in-vitro and can be used as a potential anti-cancer treatment as well as to combat Covid-19 related cytokine storm.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;