Israel Souza Ribeiro, Igor Pereira Ribeiro Muniz, Maria Poliana Leite Galantini, Caroline Vieira Gonçalves, Paulo Henrique Bispo Lima, Emely Soares Silva, Nathalia Rosa Silva, Francine Cristina Silva Rosa, Luciano Pereira Rosa, Dirceu Joaquim Costa, Juliano Geraldo Amaral, Robson Amaro Augusto da Silva
{"title":"巴西绿色蜂胶作为光敏剂用于LED光诱导抗甲氧西林金黄色葡萄球菌(MRSA)和万古霉素中间体金黄色葡萄菌(VISA)的光动力疗法(aPDT)的表征。","authors":"Israel Souza Ribeiro, Igor Pereira Ribeiro Muniz, Maria Poliana Leite Galantini, Caroline Vieira Gonçalves, Paulo Henrique Bispo Lima, Emely Soares Silva, Nathalia Rosa Silva, Francine Cristina Silva Rosa, Luciano Pereira Rosa, Dirceu Joaquim Costa, Juliano Geraldo Amaral, Robson Amaro Augusto da Silva","doi":"10.1007/s43630-023-00495-1","DOIUrl":null,"url":null,"abstract":"<p><p>Staphylococcus aureus is the primary cause of skin and soft tissue infections. Its significant adaptability and the development of resistance are the main factors linked to its spread and the challenges in its treatment. Antimicrobial photodynamic therapy emerges as a promising alternative. This work aimed to characterize the antimicrobial photodynamic activity of Brazilian green propolis, along with the key bioactive compounds associated with this activity. Initially, a scanning spectrometry was conducted to assess the wavelengths with the potential to activate green propolis. Subsequently, reference strains of methicillin-resistant Staphylococcus aureus (MRSA ATCC 43300) and vancomycin-intermediate Staphylococcus aureus (VISA ATCC 700699) were exposed to varying concentrations of green propolis: 1 µg/mL, 5 µg/mL, 10 µg/mL, 50 µg /mL and 100 µg/mL and were stimulated by blue, green or red LED light. Finally, high-performance liquid chromatography coupled with a diode array detector and tandem mass spectrometry techniques, along with classic molecular networking analysis, was performed to identify potential bioactive molecules with photodynamic activity. Brazilian green propolis exhibits a pronounced absorption peak and heightened photo-responsiveness when exposed to blue light within the range of 400 nm and 450 nm. This characteristic reveals noteworthy significant photodynamic activity against MRSA and VISA at concentrations from 5 µg/mL. Furthermore, the propolis comprises compounds like curcumin and other flavonoids sourced from flavone, which possess the potential for photodynamic activity and other antimicrobial functions. Consequently, Brazilian green propolis holds promise as an excellent bactericidal agent, displaying a synergistic antibacterial property enhanced by light-induced photodynamic effects.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":"2877-2890"},"PeriodicalIF":3.2000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of Brazilian green propolis as a photosensitizer for LED light-induced antimicrobial photodynamic therapy (aPDT) against methicillin-resistant Staphylococcus aureus (MRSA) and Vancomycin-intermediate Staphylococcus aureus (VISA).\",\"authors\":\"Israel Souza Ribeiro, Igor Pereira Ribeiro Muniz, Maria Poliana Leite Galantini, Caroline Vieira Gonçalves, Paulo Henrique Bispo Lima, Emely Soares Silva, Nathalia Rosa Silva, Francine Cristina Silva Rosa, Luciano Pereira Rosa, Dirceu Joaquim Costa, Juliano Geraldo Amaral, Robson Amaro Augusto da Silva\",\"doi\":\"10.1007/s43630-023-00495-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Staphylococcus aureus is the primary cause of skin and soft tissue infections. Its significant adaptability and the development of resistance are the main factors linked to its spread and the challenges in its treatment. Antimicrobial photodynamic therapy emerges as a promising alternative. This work aimed to characterize the antimicrobial photodynamic activity of Brazilian green propolis, along with the key bioactive compounds associated with this activity. Initially, a scanning spectrometry was conducted to assess the wavelengths with the potential to activate green propolis. Subsequently, reference strains of methicillin-resistant Staphylococcus aureus (MRSA ATCC 43300) and vancomycin-intermediate Staphylococcus aureus (VISA ATCC 700699) were exposed to varying concentrations of green propolis: 1 µg/mL, 5 µg/mL, 10 µg/mL, 50 µg /mL and 100 µg/mL and were stimulated by blue, green or red LED light. Finally, high-performance liquid chromatography coupled with a diode array detector and tandem mass spectrometry techniques, along with classic molecular networking analysis, was performed to identify potential bioactive molecules with photodynamic activity. Brazilian green propolis exhibits a pronounced absorption peak and heightened photo-responsiveness when exposed to blue light within the range of 400 nm and 450 nm. This characteristic reveals noteworthy significant photodynamic activity against MRSA and VISA at concentrations from 5 µg/mL. Furthermore, the propolis comprises compounds like curcumin and other flavonoids sourced from flavone, which possess the potential for photodynamic activity and other antimicrobial functions. Consequently, Brazilian green propolis holds promise as an excellent bactericidal agent, displaying a synergistic antibacterial property enhanced by light-induced photodynamic effects.</p>\",\"PeriodicalId\":98,\"journal\":{\"name\":\"Photochemical & Photobiological Sciences\",\"volume\":\" \",\"pages\":\"2877-2890\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photochemical & Photobiological Sciences\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s43630-023-00495-1\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochemical & Photobiological Sciences","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s43630-023-00495-1","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Characterization of Brazilian green propolis as a photosensitizer for LED light-induced antimicrobial photodynamic therapy (aPDT) against methicillin-resistant Staphylococcus aureus (MRSA) and Vancomycin-intermediate Staphylococcus aureus (VISA).
Staphylococcus aureus is the primary cause of skin and soft tissue infections. Its significant adaptability and the development of resistance are the main factors linked to its spread and the challenges in its treatment. Antimicrobial photodynamic therapy emerges as a promising alternative. This work aimed to characterize the antimicrobial photodynamic activity of Brazilian green propolis, along with the key bioactive compounds associated with this activity. Initially, a scanning spectrometry was conducted to assess the wavelengths with the potential to activate green propolis. Subsequently, reference strains of methicillin-resistant Staphylococcus aureus (MRSA ATCC 43300) and vancomycin-intermediate Staphylococcus aureus (VISA ATCC 700699) were exposed to varying concentrations of green propolis: 1 µg/mL, 5 µg/mL, 10 µg/mL, 50 µg /mL and 100 µg/mL and were stimulated by blue, green or red LED light. Finally, high-performance liquid chromatography coupled with a diode array detector and tandem mass spectrometry techniques, along with classic molecular networking analysis, was performed to identify potential bioactive molecules with photodynamic activity. Brazilian green propolis exhibits a pronounced absorption peak and heightened photo-responsiveness when exposed to blue light within the range of 400 nm and 450 nm. This characteristic reveals noteworthy significant photodynamic activity against MRSA and VISA at concentrations from 5 µg/mL. Furthermore, the propolis comprises compounds like curcumin and other flavonoids sourced from flavone, which possess the potential for photodynamic activity and other antimicrobial functions. Consequently, Brazilian green propolis holds promise as an excellent bactericidal agent, displaying a synergistic antibacterial property enhanced by light-induced photodynamic effects.