Simone Rentschler, Max Borgolte, Alexander Filbert, Stefan Laufer and Hans-Peter Deigner
{"title":"应用基于聚二甲基丙烯酰胺的β-内酰胺类抗生素和β-内酶抑制剂表面功能化的高效β-内内酰胺酶测定。","authors":"Simone Rentschler, Max Borgolte, Alexander Filbert, Stefan Laufer and Hans-Peter Deigner","doi":"10.1039/D3LC00682D","DOIUrl":null,"url":null,"abstract":"<p >In recent decades, the rise of β-lactamases has substantially led to the emergence and wide spread of antibiotic resistance posing a serious global health threat. There is growing need for the development of rapid, cost-effective and user-friendly diagnostic assays for the accurate detection of β-lactamases to optimize patient outcomes and prevent the spread of multidrug-resistances. In this article, we present a poly-dimethylacrylamide (PDMA)-based surface functionalization to immobilize β-lactam antibiotics and β-lactamase inhibitors of different subclasses. Immobilization was induced <em>via</em> UV-crosslinking through C,H-insertion reactions. The functional coatings were successfully applied in a highly efficient assay for the determination of recombinant β-lactamases as well as β-lactamases isolated from clinically relevant bacterial strains. Thus, this method describes an innovative approach with several significant benefits for diagnostic applications: the creation of specific detection platforms tailored for β-lactamase activity, the development of high-throughput diagnostic assays and benefits regarding stability and shelf-life. Furthermore, this method is highly adaptable to other surfaces, antibiotics, and analytes, offering far-reaching implications for various biomedical, environmental, and antimicrobial applications.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" 24","pages":" 5120-5130"},"PeriodicalIF":5.4000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly efficient β-lactamase assay applying poly-dimethylacrylamide-based surface functionalization with β-lactam antibiotics and β-lactamase inhibitors†\",\"authors\":\"Simone Rentschler, Max Borgolte, Alexander Filbert, Stefan Laufer and Hans-Peter Deigner\",\"doi\":\"10.1039/D3LC00682D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In recent decades, the rise of β-lactamases has substantially led to the emergence and wide spread of antibiotic resistance posing a serious global health threat. There is growing need for the development of rapid, cost-effective and user-friendly diagnostic assays for the accurate detection of β-lactamases to optimize patient outcomes and prevent the spread of multidrug-resistances. In this article, we present a poly-dimethylacrylamide (PDMA)-based surface functionalization to immobilize β-lactam antibiotics and β-lactamase inhibitors of different subclasses. Immobilization was induced <em>via</em> UV-crosslinking through C,H-insertion reactions. The functional coatings were successfully applied in a highly efficient assay for the determination of recombinant β-lactamases as well as β-lactamases isolated from clinically relevant bacterial strains. Thus, this method describes an innovative approach with several significant benefits for diagnostic applications: the creation of specific detection platforms tailored for β-lactamase activity, the development of high-throughput diagnostic assays and benefits regarding stability and shelf-life. Furthermore, this method is highly adaptable to other surfaces, antibiotics, and analytes, offering far-reaching implications for various biomedical, environmental, and antimicrobial applications.</p>\",\"PeriodicalId\":85,\"journal\":{\"name\":\"Lab on a Chip\",\"volume\":\" 24\",\"pages\":\" 5120-5130\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lab on a Chip\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/lc/d3lc00682d\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/lc/d3lc00682d","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Highly efficient β-lactamase assay applying poly-dimethylacrylamide-based surface functionalization with β-lactam antibiotics and β-lactamase inhibitors†
In recent decades, the rise of β-lactamases has substantially led to the emergence and wide spread of antibiotic resistance posing a serious global health threat. There is growing need for the development of rapid, cost-effective and user-friendly diagnostic assays for the accurate detection of β-lactamases to optimize patient outcomes and prevent the spread of multidrug-resistances. In this article, we present a poly-dimethylacrylamide (PDMA)-based surface functionalization to immobilize β-lactam antibiotics and β-lactamase inhibitors of different subclasses. Immobilization was induced via UV-crosslinking through C,H-insertion reactions. The functional coatings were successfully applied in a highly efficient assay for the determination of recombinant β-lactamases as well as β-lactamases isolated from clinically relevant bacterial strains. Thus, this method describes an innovative approach with several significant benefits for diagnostic applications: the creation of specific detection platforms tailored for β-lactamase activity, the development of high-throughput diagnostic assays and benefits regarding stability and shelf-life. Furthermore, this method is highly adaptable to other surfaces, antibiotics, and analytes, offering far-reaching implications for various biomedical, environmental, and antimicrobial applications.
期刊介绍:
Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.