{"title":"教育","authors":"Hèléne Frankowska","doi":"10.1137/23n975806","DOIUrl":null,"url":null,"abstract":"SIAM Review, Volume 65, Issue 4, Page 1135-1135, November 2023. <br/> In this issue the Education section presents three contributions. The first paper “The Reflection Method for the Numerical Solution of Linear Systems,” by Margherita Guida and Carlo Sbordone, discusses the celebrated Gianfranco Cimmino reflection algorithm for the numerical solution of linear systems $Ax=b$, where $A$ is a nonsingular $n \\times n$ sparse matrix, $b \\in \\mathbb{R}^n$, and $n$ may be large. This innovative iterative algorithm proposed in 1938 uses the geometric reading of each equation of the system as a hyperplane to compute an average of all the symmetric reflections of an initial point $x^0$ with respect to hyperplanes. This leads to a new point $x^1$ which is closer to the solution. The iterative method constructs a sequence $x^k \\in \\mathbb{R}^n$ converging to the unique intersection of hyperplanes. To overcome the algorithm's efficiency issues, in 1965 Cimmino upgraded his method by introducing probabilistic arguments also discussed in this article. The method is different from widely used direct methods. Since the early 1980s, there has been increasing interest in Cimmino's method that has shown to work well in parallel computing, in particular for applications in the area of image reconstruction via X-ray tomography. Cimmino's algorithm could be an interesting subject to be deepened by students in a course on scientific computing. The second paper, “Incorporating Computational Challenges into a Multidisciplinary Course on Stochastic Processes,” is presented by Mark Jayson Cortez, Alan Eric Akil, Krešimir Josić, and Alexander J. Stewart. The authors describe their graduate-level introductory stochastic modeling course in biology for a mixed audience of mathematicians and biologists whose goal was teaching students to formulate, implement, and assess nontrivial biomathematical models and to develop research skills. This problem-based learning was addressed by proposing several computational modeling challenges based on real life applied problems; by assigning tasks to groups formed by four students, where necessarily participants had different levels of knowledge in programming, mathematics, and biology; and by creating retrospective discussion sessions. In this way the stochastic modeling was introduced using a variety of examples involving, for instance, biochemical reaction networks, gene regulatory systems, neuronal networks, models of epidemics, stochastic games, and agent-based models. As supplementary material, a detailed syllabus, homework, and the text of all computational challenges, along with code for the discussed examples, are provided. The third paper, “Hysteresis and Stability,” by Amenda N. Chow, Kirsten A. Morris, and Gina F. Rabbah, describes the phenomenon of hysteresis in some ordinary differential equations motivated by applications in a way that can be integrated into an introductory course of dynamical systems for undergraduate students. The considered ODEs involve a time dependent parameter, and looping behavior is illustrated with figures. These low-dimensional examples can be used to construct student exercises. There are many citations of related literature inviting the readers to go beyond. A discussion of possible extensions, including hysteresis in PDEs, concludes the article.","PeriodicalId":49525,"journal":{"name":"SIAM Review","volume":"5 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Education\",\"authors\":\"Hèléne Frankowska\",\"doi\":\"10.1137/23n975806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Review, Volume 65, Issue 4, Page 1135-1135, November 2023. <br/> In this issue the Education section presents three contributions. The first paper “The Reflection Method for the Numerical Solution of Linear Systems,” by Margherita Guida and Carlo Sbordone, discusses the celebrated Gianfranco Cimmino reflection algorithm for the numerical solution of linear systems $Ax=b$, where $A$ is a nonsingular $n \\\\times n$ sparse matrix, $b \\\\in \\\\mathbb{R}^n$, and $n$ may be large. This innovative iterative algorithm proposed in 1938 uses the geometric reading of each equation of the system as a hyperplane to compute an average of all the symmetric reflections of an initial point $x^0$ with respect to hyperplanes. This leads to a new point $x^1$ which is closer to the solution. The iterative method constructs a sequence $x^k \\\\in \\\\mathbb{R}^n$ converging to the unique intersection of hyperplanes. To overcome the algorithm's efficiency issues, in 1965 Cimmino upgraded his method by introducing probabilistic arguments also discussed in this article. The method is different from widely used direct methods. Since the early 1980s, there has been increasing interest in Cimmino's method that has shown to work well in parallel computing, in particular for applications in the area of image reconstruction via X-ray tomography. Cimmino's algorithm could be an interesting subject to be deepened by students in a course on scientific computing. The second paper, “Incorporating Computational Challenges into a Multidisciplinary Course on Stochastic Processes,” is presented by Mark Jayson Cortez, Alan Eric Akil, Krešimir Josić, and Alexander J. Stewart. The authors describe their graduate-level introductory stochastic modeling course in biology for a mixed audience of mathematicians and biologists whose goal was teaching students to formulate, implement, and assess nontrivial biomathematical models and to develop research skills. This problem-based learning was addressed by proposing several computational modeling challenges based on real life applied problems; by assigning tasks to groups formed by four students, where necessarily participants had different levels of knowledge in programming, mathematics, and biology; and by creating retrospective discussion sessions. In this way the stochastic modeling was introduced using a variety of examples involving, for instance, biochemical reaction networks, gene regulatory systems, neuronal networks, models of epidemics, stochastic games, and agent-based models. As supplementary material, a detailed syllabus, homework, and the text of all computational challenges, along with code for the discussed examples, are provided. The third paper, “Hysteresis and Stability,” by Amenda N. Chow, Kirsten A. Morris, and Gina F. Rabbah, describes the phenomenon of hysteresis in some ordinary differential equations motivated by applications in a way that can be integrated into an introductory course of dynamical systems for undergraduate students. The considered ODEs involve a time dependent parameter, and looping behavior is illustrated with figures. These low-dimensional examples can be used to construct student exercises. There are many citations of related literature inviting the readers to go beyond. A discussion of possible extensions, including hysteresis in PDEs, concludes the article.\",\"PeriodicalId\":49525,\"journal\":{\"name\":\"SIAM Review\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Review\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23n975806\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Review","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23n975806","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
SIAM Review, Volume 65, Issue 4, Page 1135-1135, November 2023. In this issue the Education section presents three contributions. The first paper “The Reflection Method for the Numerical Solution of Linear Systems,” by Margherita Guida and Carlo Sbordone, discusses the celebrated Gianfranco Cimmino reflection algorithm for the numerical solution of linear systems $Ax=b$, where $A$ is a nonsingular $n \times n$ sparse matrix, $b \in \mathbb{R}^n$, and $n$ may be large. This innovative iterative algorithm proposed in 1938 uses the geometric reading of each equation of the system as a hyperplane to compute an average of all the symmetric reflections of an initial point $x^0$ with respect to hyperplanes. This leads to a new point $x^1$ which is closer to the solution. The iterative method constructs a sequence $x^k \in \mathbb{R}^n$ converging to the unique intersection of hyperplanes. To overcome the algorithm's efficiency issues, in 1965 Cimmino upgraded his method by introducing probabilistic arguments also discussed in this article. The method is different from widely used direct methods. Since the early 1980s, there has been increasing interest in Cimmino's method that has shown to work well in parallel computing, in particular for applications in the area of image reconstruction via X-ray tomography. Cimmino's algorithm could be an interesting subject to be deepened by students in a course on scientific computing. The second paper, “Incorporating Computational Challenges into a Multidisciplinary Course on Stochastic Processes,” is presented by Mark Jayson Cortez, Alan Eric Akil, Krešimir Josić, and Alexander J. Stewart. The authors describe their graduate-level introductory stochastic modeling course in biology for a mixed audience of mathematicians and biologists whose goal was teaching students to formulate, implement, and assess nontrivial biomathematical models and to develop research skills. This problem-based learning was addressed by proposing several computational modeling challenges based on real life applied problems; by assigning tasks to groups formed by four students, where necessarily participants had different levels of knowledge in programming, mathematics, and biology; and by creating retrospective discussion sessions. In this way the stochastic modeling was introduced using a variety of examples involving, for instance, biochemical reaction networks, gene regulatory systems, neuronal networks, models of epidemics, stochastic games, and agent-based models. As supplementary material, a detailed syllabus, homework, and the text of all computational challenges, along with code for the discussed examples, are provided. The third paper, “Hysteresis and Stability,” by Amenda N. Chow, Kirsten A. Morris, and Gina F. Rabbah, describes the phenomenon of hysteresis in some ordinary differential equations motivated by applications in a way that can be integrated into an introductory course of dynamical systems for undergraduate students. The considered ODEs involve a time dependent parameter, and looping behavior is illustrated with figures. These low-dimensional examples can be used to construct student exercises. There are many citations of related literature inviting the readers to go beyond. A discussion of possible extensions, including hysteresis in PDEs, concludes the article.
期刊介绍:
Survey and Review feature papers that provide an integrative and current viewpoint on important topics in applied or computational mathematics and scientific computing. These papers aim to offer a comprehensive perspective on the subject matter.
Research Spotlights publish concise research papers in applied and computational mathematics that are of interest to a wide range of readers in SIAM Review. The papers in this section present innovative ideas that are clearly explained and motivated. They stand out from regular publications in specific SIAM journals due to their accessibility and potential for widespread and long-lasting influence.