{"title":"含氧官能团对生物可降解塑料微观力学行为及其老化过程中微塑料形成的影响","authors":"Wenyi Huang, Guoqiang Jiang, Lidan Xie, Xueqin Chen, Runzhe Zhang, Xiaoyun Fan","doi":"10.1016/j.jhazmat.2023.132911","DOIUrl":null,"url":null,"abstract":"<div><p>Biodegradable plastics (BPs) are more prone to generate harmful microplastics (MPs) in a short time, which have always been ignored. Oxygenated functional group formation is considered to be a key indicator for assessing microplastic formation, while it is difficult to characterize at a very early stage. The micromechanical properties of the aging plastic during the formation of the MPs are highly influenced by the evolution of oxygen-containing functional groups, however, their relationship has rarely been revealed. Herein, we compared changes in the physicochemical properties of BPs and non-degradable plastic bags during aging in artificial seawater, soil, and air. The results showed that the oxidation of plastics in the air was the most significant, with the most prominent oxidation in BPs. The accumulation of carbonyl groups leads to a significant increase in the micromechanical properties and surface brittleness of the plastic, further exacerbating the formation of MPs. It was also verified by the FTIR, 2D-COS, AFM, and Raman spectroscopy analyses. Furthermore, the increased adhesion and roughness caused by oxygen-containing functional groups suggest that the environmental risks of BPs cannot be ignored. Our findings suggest that the testing of micromechanical properties can predicate the formation of the MPs at an early stage.</p></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"463 ","pages":"Article 132911"},"PeriodicalIF":12.2000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of oxygen-containing functional groups on the micromechanical behavior of biodegradable plastics and their formation of microplastics during aging\",\"authors\":\"Wenyi Huang, Guoqiang Jiang, Lidan Xie, Xueqin Chen, Runzhe Zhang, Xiaoyun Fan\",\"doi\":\"10.1016/j.jhazmat.2023.132911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Biodegradable plastics (BPs) are more prone to generate harmful microplastics (MPs) in a short time, which have always been ignored. Oxygenated functional group formation is considered to be a key indicator for assessing microplastic formation, while it is difficult to characterize at a very early stage. The micromechanical properties of the aging plastic during the formation of the MPs are highly influenced by the evolution of oxygen-containing functional groups, however, their relationship has rarely been revealed. Herein, we compared changes in the physicochemical properties of BPs and non-degradable plastic bags during aging in artificial seawater, soil, and air. The results showed that the oxidation of plastics in the air was the most significant, with the most prominent oxidation in BPs. The accumulation of carbonyl groups leads to a significant increase in the micromechanical properties and surface brittleness of the plastic, further exacerbating the formation of MPs. It was also verified by the FTIR, 2D-COS, AFM, and Raman spectroscopy analyses. Furthermore, the increased adhesion and roughness caused by oxygen-containing functional groups suggest that the environmental risks of BPs cannot be ignored. Our findings suggest that the testing of micromechanical properties can predicate the formation of the MPs at an early stage.</p></div>\",\"PeriodicalId\":361,\"journal\":{\"name\":\"Journal of Hazardous Materials\",\"volume\":\"463 \",\"pages\":\"Article 132911\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hazardous Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304389423021957\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304389423021957","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Effect of oxygen-containing functional groups on the micromechanical behavior of biodegradable plastics and their formation of microplastics during aging
Biodegradable plastics (BPs) are more prone to generate harmful microplastics (MPs) in a short time, which have always been ignored. Oxygenated functional group formation is considered to be a key indicator for assessing microplastic formation, while it is difficult to characterize at a very early stage. The micromechanical properties of the aging plastic during the formation of the MPs are highly influenced by the evolution of oxygen-containing functional groups, however, their relationship has rarely been revealed. Herein, we compared changes in the physicochemical properties of BPs and non-degradable plastic bags during aging in artificial seawater, soil, and air. The results showed that the oxidation of plastics in the air was the most significant, with the most prominent oxidation in BPs. The accumulation of carbonyl groups leads to a significant increase in the micromechanical properties and surface brittleness of the plastic, further exacerbating the formation of MPs. It was also verified by the FTIR, 2D-COS, AFM, and Raman spectroscopy analyses. Furthermore, the increased adhesion and roughness caused by oxygen-containing functional groups suggest that the environmental risks of BPs cannot be ignored. Our findings suggest that the testing of micromechanical properties can predicate the formation of the MPs at an early stage.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.