Maciej Zajac , Jiayi Song , Patrick Ullrich , Jan Skocek , Mohsen Ben Haha , Jørgen Skibsted
{"title":"氧化铝-硅胶的高早期火山灰活性:碳酸化再生混凝土浆体复合水泥水化研究","authors":"Maciej Zajac , Jiayi Song , Patrick Ullrich , Jan Skocek , Mohsen Ben Haha , Jørgen Skibsted","doi":"10.1016/j.cemconres.2023.107345","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Carbonated recycled concrete paste (cRCP) is a unique supplementary cementitious material with </span>pozzolanic properties<span> stemming from the alumina-silica gel. This study reveals that the high early strength<span> of composite cements<span> with cRCP is attributed to its rapid pozzolanic reactivity. </span></span></span></span><sup>27</sup>Al and <sup>29</sup><span>Si NMR investigations show that the alumina-silica gel is consumed after only 7 days of hydration. The rapid gel reaction<span> results in the formation of a C-(A)-S-H phase with a low Ca/Si ratio. After 7 days, belite and remains of alite react further and increases the Ca/Si ratio of the C-(A)-S-H phase to a level typical for blended cements<span>. As a result, a lower porosity forms already at early age, resulting in high strength. The reactivity of cRCP is influenced by its origin and carbonation conditions. Carbonation in sulfate-rich solutions enhances the gel surface area and accelerates the reaction. Slag remnants in cRCP react aiding to microstructure and strength development.</span></span></span></p></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"175 ","pages":"Article 107345"},"PeriodicalIF":10.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"High early pozzolanic reactivity of alumina-silica gel: A study of the hydration of composite cements with carbonated recycled concrete paste\",\"authors\":\"Maciej Zajac , Jiayi Song , Patrick Ullrich , Jan Skocek , Mohsen Ben Haha , Jørgen Skibsted\",\"doi\":\"10.1016/j.cemconres.2023.107345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Carbonated recycled concrete paste (cRCP) is a unique supplementary cementitious material with </span>pozzolanic properties<span> stemming from the alumina-silica gel. This study reveals that the high early strength<span> of composite cements<span> with cRCP is attributed to its rapid pozzolanic reactivity. </span></span></span></span><sup>27</sup>Al and <sup>29</sup><span>Si NMR investigations show that the alumina-silica gel is consumed after only 7 days of hydration. The rapid gel reaction<span> results in the formation of a C-(A)-S-H phase with a low Ca/Si ratio. After 7 days, belite and remains of alite react further and increases the Ca/Si ratio of the C-(A)-S-H phase to a level typical for blended cements<span>. As a result, a lower porosity forms already at early age, resulting in high strength. The reactivity of cRCP is influenced by its origin and carbonation conditions. Carbonation in sulfate-rich solutions enhances the gel surface area and accelerates the reaction. Slag remnants in cRCP react aiding to microstructure and strength development.</span></span></span></p></div>\",\"PeriodicalId\":266,\"journal\":{\"name\":\"Cement and Concrete Research\",\"volume\":\"175 \",\"pages\":\"Article 107345\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement and Concrete Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008884623002594\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008884623002594","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
High early pozzolanic reactivity of alumina-silica gel: A study of the hydration of composite cements with carbonated recycled concrete paste
Carbonated recycled concrete paste (cRCP) is a unique supplementary cementitious material with pozzolanic properties stemming from the alumina-silica gel. This study reveals that the high early strength of composite cements with cRCP is attributed to its rapid pozzolanic reactivity. 27Al and 29Si NMR investigations show that the alumina-silica gel is consumed after only 7 days of hydration. The rapid gel reaction results in the formation of a C-(A)-S-H phase with a low Ca/Si ratio. After 7 days, belite and remains of alite react further and increases the Ca/Si ratio of the C-(A)-S-H phase to a level typical for blended cements. As a result, a lower porosity forms already at early age, resulting in high strength. The reactivity of cRCP is influenced by its origin and carbonation conditions. Carbonation in sulfate-rich solutions enhances the gel surface area and accelerates the reaction. Slag remnants in cRCP react aiding to microstructure and strength development.
期刊介绍:
Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.