{"title":"旧瓶装新酒:tPA用于缺血性中风治疗。","authors":"Ruining She, Jinwen Ge, Zhigang Mei","doi":"10.1007/s12975-023-01209-6","DOIUrl":null,"url":null,"abstract":"<p><p>As the only clinical thrombolytic drug approved by the FDA, tissue-type plasminogen activator (tPA) is the good standard acute treatment against ischemic stroke (IS) during the super-early stage. tPA forms the active principle of alteplase, a recombinant tissue-type plasminogen activator (rtPA), which is well known for its intravascular thrombolytic activity. However, the multifaceted functions of tPA in the central nervous system (CNS) hold untapped potential. Currently, increasing studies have explored the neuroprotective function of tPA in neurological diseases, particularly in acute ischemic stroke (AIS). A series of studies have indicated that tPA has anti-excitotoxic, neurotrophic, and anti-apoptotic effects on neurons; it is also involved in neuronal plasticity, axonal regeneration, and cerebral inflammatory processes, but how to deeply understand the underlying mechanism and take maximum advantage of tPA seems to be urgent. Therefore, more work is needed to illuminate how tPA performs with more diverse functions after stroke onset. In this comment, we focus on possible hypotheses about why and how tPA promotes ischemic neuronal survival in a comprehensive view. The text provides a holistic picture of the functions of tPA and enlists the considerations for the future, which might attract more attention toward the therapeutic potential of tPA in AIS.</p>","PeriodicalId":23237,"journal":{"name":"Translational Stroke Research","volume":" ","pages":"568-572"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Wine in an Old Bottle: tPA for Ischemic Stroke Management.\",\"authors\":\"Ruining She, Jinwen Ge, Zhigang Mei\",\"doi\":\"10.1007/s12975-023-01209-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As the only clinical thrombolytic drug approved by the FDA, tissue-type plasminogen activator (tPA) is the good standard acute treatment against ischemic stroke (IS) during the super-early stage. tPA forms the active principle of alteplase, a recombinant tissue-type plasminogen activator (rtPA), which is well known for its intravascular thrombolytic activity. However, the multifaceted functions of tPA in the central nervous system (CNS) hold untapped potential. Currently, increasing studies have explored the neuroprotective function of tPA in neurological diseases, particularly in acute ischemic stroke (AIS). A series of studies have indicated that tPA has anti-excitotoxic, neurotrophic, and anti-apoptotic effects on neurons; it is also involved in neuronal plasticity, axonal regeneration, and cerebral inflammatory processes, but how to deeply understand the underlying mechanism and take maximum advantage of tPA seems to be urgent. Therefore, more work is needed to illuminate how tPA performs with more diverse functions after stroke onset. In this comment, we focus on possible hypotheses about why and how tPA promotes ischemic neuronal survival in a comprehensive view. The text provides a holistic picture of the functions of tPA and enlists the considerations for the future, which might attract more attention toward the therapeutic potential of tPA in AIS.</p>\",\"PeriodicalId\":23237,\"journal\":{\"name\":\"Translational Stroke Research\",\"volume\":\" \",\"pages\":\"568-572\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Stroke Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12975-023-01209-6\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Stroke Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12975-023-01209-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
New Wine in an Old Bottle: tPA for Ischemic Stroke Management.
As the only clinical thrombolytic drug approved by the FDA, tissue-type plasminogen activator (tPA) is the good standard acute treatment against ischemic stroke (IS) during the super-early stage. tPA forms the active principle of alteplase, a recombinant tissue-type plasminogen activator (rtPA), which is well known for its intravascular thrombolytic activity. However, the multifaceted functions of tPA in the central nervous system (CNS) hold untapped potential. Currently, increasing studies have explored the neuroprotective function of tPA in neurological diseases, particularly in acute ischemic stroke (AIS). A series of studies have indicated that tPA has anti-excitotoxic, neurotrophic, and anti-apoptotic effects on neurons; it is also involved in neuronal plasticity, axonal regeneration, and cerebral inflammatory processes, but how to deeply understand the underlying mechanism and take maximum advantage of tPA seems to be urgent. Therefore, more work is needed to illuminate how tPA performs with more diverse functions after stroke onset. In this comment, we focus on possible hypotheses about why and how tPA promotes ischemic neuronal survival in a comprehensive view. The text provides a holistic picture of the functions of tPA and enlists the considerations for the future, which might attract more attention toward the therapeutic potential of tPA in AIS.
期刊介绍:
Translational Stroke Research covers basic, translational, and clinical studies. The Journal emphasizes novel approaches to help both to understand clinical phenomenon through basic science tools, and to translate basic science discoveries into the development of new strategies for the prevention, assessment, treatment, and enhancement of central nervous system repair after stroke and other forms of neurotrauma.
Translational Stroke Research focuses on translational research and is relevant to both basic scientists and physicians, including but not restricted to neuroscientists, vascular biologists, neurologists, neuroimagers, and neurosurgeons.