聚氨酯培养基能够在人类体外神经创伤模型中长期单核培养神经元。

IF 1.8 Q3 CLINICAL NEUROLOGY
Neurotrauma reports Pub Date : 2023-10-16 eCollection Date: 2023-01-01 DOI:10.1089/neur.2023.0060
Angela Mitevska, Citlally Santacruz, Eric J Martin, Ian E Jones, Arian Ghiacy, Simon Dixon, Nima Mostafazadeh, Zhangli Peng, Evangelos Kiskinis, John D Finan
{"title":"聚氨酯培养基能够在人类体外神经创伤模型中长期单核培养神经元。","authors":"Angela Mitevska, Citlally Santacruz, Eric J Martin, Ian E Jones, Arian Ghiacy, Simon Dixon, Nima Mostafazadeh, Zhangli Peng, Evangelos Kiskinis, John D Finan","doi":"10.1089/neur.2023.0060","DOIUrl":null,"url":null,"abstract":"<p><p>Human induced pluripotent stem cell (hiPSC)-derived cells can reproduce human-specific pathophysiology, patient-specific vulnerability, and gene-environment interactions in neurological disease. Human <i>in vitro</i> models of neurotrauma therefore have great potential to advance the field. However, this potential cannot be realized until important biomaterials challenges are addressed. <i>Status quo</i> stretch injury models of neurotrauma culture cells on sheets of polydimethylsiloxane (PDMS) that are incompatible with long-term monoculture of hiPSC-derived neurons. Here, we overcame this challenge in an established human <i>in vitro</i> neurotrauma model by replacing PDMS with a highly biocompatible form of polyurethane (PU). This substitution allowed long-term monoculture of hiPSC-derived neurons. It also changed the biomechanics of stretch injury. We quantified these changes experimentally using high-speed videography and digital image correlation. We used finite element modeling to quantify the influence of the culture substrate's thickness, stiffness, and coefficient of friction on membrane stretch and concluded that the coefficient of friction explained most of the observed biomechanical changes. Despite these changes, we demonstrated that the modified model produced a robust, dose-dependent trauma phenotype in hiPSC-derived neuron monocultures. In summary, the introduction of this PU film makes it possible to maintain hiPSC-derived neurons in monoculture for long periods in a human <i>in vitro</i> neurotrauma model. In doing so, it opens new horizons in the field of neurotrauma by enabling the unique experimental paradigms (e.g., isogenic models) associated with hiPSC-derived neurons.</p>","PeriodicalId":74300,"journal":{"name":"Neurotrauma reports","volume":"4 1","pages":"682-692"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10615064/pdf/","citationCount":"0","resultStr":"{\"title\":\"Polyurethane Culture Substrates Enable Long-Term Neuron Monoculture in a Human <i>in vitro</i> Model of Neurotrauma.\",\"authors\":\"Angela Mitevska, Citlally Santacruz, Eric J Martin, Ian E Jones, Arian Ghiacy, Simon Dixon, Nima Mostafazadeh, Zhangli Peng, Evangelos Kiskinis, John D Finan\",\"doi\":\"10.1089/neur.2023.0060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human induced pluripotent stem cell (hiPSC)-derived cells can reproduce human-specific pathophysiology, patient-specific vulnerability, and gene-environment interactions in neurological disease. Human <i>in vitro</i> models of neurotrauma therefore have great potential to advance the field. However, this potential cannot be realized until important biomaterials challenges are addressed. <i>Status quo</i> stretch injury models of neurotrauma culture cells on sheets of polydimethylsiloxane (PDMS) that are incompatible with long-term monoculture of hiPSC-derived neurons. Here, we overcame this challenge in an established human <i>in vitro</i> neurotrauma model by replacing PDMS with a highly biocompatible form of polyurethane (PU). This substitution allowed long-term monoculture of hiPSC-derived neurons. It also changed the biomechanics of stretch injury. We quantified these changes experimentally using high-speed videography and digital image correlation. We used finite element modeling to quantify the influence of the culture substrate's thickness, stiffness, and coefficient of friction on membrane stretch and concluded that the coefficient of friction explained most of the observed biomechanical changes. Despite these changes, we demonstrated that the modified model produced a robust, dose-dependent trauma phenotype in hiPSC-derived neuron monocultures. In summary, the introduction of this PU film makes it possible to maintain hiPSC-derived neurons in monoculture for long periods in a human <i>in vitro</i> neurotrauma model. In doing so, it opens new horizons in the field of neurotrauma by enabling the unique experimental paradigms (e.g., isogenic models) associated with hiPSC-derived neurons.</p>\",\"PeriodicalId\":74300,\"journal\":{\"name\":\"Neurotrauma reports\",\"volume\":\"4 1\",\"pages\":\"682-692\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10615064/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurotrauma reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/neur.2023.0060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotrauma reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/neur.2023.0060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人类诱导多能干细胞(hiPSC)衍生的细胞可以在神经疾病中复制人类特异性的病理生理学、患者特异性的脆弱性和基因与环境的相互作用。因此,神经创伤的人类体外模型在该领域具有巨大的发展潜力。然而,在重要的生物材料挑战得到解决之前,这种潜力是无法实现的。聚二甲基硅氧烷(PDMS)片上神经创伤培养细胞的拉伸损伤模型现状,该模型与长期单一培养的hiPSC衍生神经元不相容。在这里,我们通过用高度生物相容性的聚氨酯(PU)代替PDMS,在已建立的人类体外神经损伤模型中克服了这一挑战。这种替代允许长期单一培养hiPSC衍生的神经元。它还改变了拉伸损伤的生物力学特性。我们使用高速摄像和数字图像相关技术对这些变化进行了实验量化。我们使用有限元建模来量化培养基的厚度、刚度和摩擦系数对膜拉伸的影响,并得出结论,摩擦系数解释了大多数观察到的生物力学变化。尽管有这些变化,我们还是证明了改良模型在hiPSC衍生的神经元单一培养中产生了强大的、剂量依赖性的创伤表型。总之,这种PU膜的引入使得在人类体外神经损伤模型中长期单一培养hiPSC衍生的神经元成为可能。通过这样做,它通过实现与hiPSC衍生神经元相关的独特实验范式(例如,等基因模型),在神经损伤领域开辟了新的视野。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Polyurethane Culture Substrates Enable Long-Term Neuron Monoculture in a Human <i>in vitro</i> Model of Neurotrauma.

Polyurethane Culture Substrates Enable Long-Term Neuron Monoculture in a Human <i>in vitro</i> Model of Neurotrauma.

Polyurethane Culture Substrates Enable Long-Term Neuron Monoculture in a Human <i>in vitro</i> Model of Neurotrauma.

Polyurethane Culture Substrates Enable Long-Term Neuron Monoculture in a Human in vitro Model of Neurotrauma.

Human induced pluripotent stem cell (hiPSC)-derived cells can reproduce human-specific pathophysiology, patient-specific vulnerability, and gene-environment interactions in neurological disease. Human in vitro models of neurotrauma therefore have great potential to advance the field. However, this potential cannot be realized until important biomaterials challenges are addressed. Status quo stretch injury models of neurotrauma culture cells on sheets of polydimethylsiloxane (PDMS) that are incompatible with long-term monoculture of hiPSC-derived neurons. Here, we overcame this challenge in an established human in vitro neurotrauma model by replacing PDMS with a highly biocompatible form of polyurethane (PU). This substitution allowed long-term monoculture of hiPSC-derived neurons. It also changed the biomechanics of stretch injury. We quantified these changes experimentally using high-speed videography and digital image correlation. We used finite element modeling to quantify the influence of the culture substrate's thickness, stiffness, and coefficient of friction on membrane stretch and concluded that the coefficient of friction explained most of the observed biomechanical changes. Despite these changes, we demonstrated that the modified model produced a robust, dose-dependent trauma phenotype in hiPSC-derived neuron monocultures. In summary, the introduction of this PU film makes it possible to maintain hiPSC-derived neurons in monoculture for long periods in a human in vitro neurotrauma model. In doing so, it opens new horizons in the field of neurotrauma by enabling the unique experimental paradigms (e.g., isogenic models) associated with hiPSC-derived neurons.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信