基于rs-fMRI和P11基因DNA甲基化的多维特征预测重度抑郁症患者的早期抗抑郁疗效。

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
ACS Applied Electronic Materials Pub Date : 2024-04-01 Epub Date: 2023-11-03 DOI:10.1177/07067437231210787
Tianyu Wang, Chenjie Gao, Jiaxing Li, Lei Li, Yingying Yue, Xiaoyun Liu, Suzhen Chen, Zhenghua Hou, Yingying Yin, Wenhao Jiang, Zhi Xu, Youyong Kong, Yonggui Yuan
{"title":"基于rs-fMRI和P11基因DNA甲基化的多维特征预测重度抑郁症患者的早期抗抑郁疗效。","authors":"Tianyu Wang, Chenjie Gao, Jiaxing Li, Lei Li, Yingying Yue, Xiaoyun Liu, Suzhen Chen, Zhenghua Hou, Yingying Yin, Wenhao Jiang, Zhi Xu, Youyong Kong, Yonggui Yuan","doi":"10.1177/07067437231210787","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study established a machine learning model based on the multidimensional data of resting-state functional activity of the brain and <i>P11</i> gene DNA methylation to predict the early efficacy of antidepressant treatment in patients with major depressive disorder (MDD).</p><p><strong>Methods: </strong>A total of 98 Han Chinese MDD were analysed in this study. Patients were divided into 51 responders and 47 nonresponders according to whether the Hamilton Depression Rating Scale-17 items (HAMD-17) reduction rate was ≥50% after 2 weeks of antidepressant treatment. At baseline, the Illumina HiSeq Platform was used to detect the methylation of 74 CpG sites of the <i>P11</i> gene in peripheral blood samples. Resting-state functional magnetic resonance imaging (rs-fMRI) scan detected the amplitude of low-frequency fluctuations (ALFF), regional homogeneity (ReHo), and functional connectivity (FC) in 116 brain regions. The least absolute shrinkage and selection operator analysis method was used to perform feature reduction and feature selection. Four typical machine learning methods were used to establish support vector machine (SVM), random forest (RF), Naïve Bayes (NB), and logistic regression (LR) prediction models based on different combinations of functional activity of the brain, <i>P11</i> gene DNA methylation and clinical/demographic features after screening.</p><p><strong>Results: </strong>The SVM model based on ALFF, ReHo, FC, <i>P11</i> methylation, and clinical/demographic features showed the best performance, with 95.92% predictive accuracy and 0.9967 area under the receiver operating characteristic curve, which was better than RF, NB, and LR models.</p><p><strong>Conclusion: </strong>The multidimensional data features combining rs-fMRI, DNA methylation, and clinical/demographic features can predict the early antidepressant efficacy in MDD.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924577/pdf/","citationCount":"0","resultStr":"{\"title\":\"Prediction of Early Antidepressant Efficacy in Patients with Major Depressive Disorder Based on Multidimensional Features of rs-fMRI and <i>P11</i> Gene DNA Methylation: Prédiction de l'efficacité précoce d'un antidépresseur chez des patients souffrant du trouble dépressif majeur d'après les caractéristiques multidimensionnelles de la méthylation de l'ADN du gène P11 et de la IRMf-rs.\",\"authors\":\"Tianyu Wang, Chenjie Gao, Jiaxing Li, Lei Li, Yingying Yue, Xiaoyun Liu, Suzhen Chen, Zhenghua Hou, Yingying Yin, Wenhao Jiang, Zhi Xu, Youyong Kong, Yonggui Yuan\",\"doi\":\"10.1177/07067437231210787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>This study established a machine learning model based on the multidimensional data of resting-state functional activity of the brain and <i>P11</i> gene DNA methylation to predict the early efficacy of antidepressant treatment in patients with major depressive disorder (MDD).</p><p><strong>Methods: </strong>A total of 98 Han Chinese MDD were analysed in this study. Patients were divided into 51 responders and 47 nonresponders according to whether the Hamilton Depression Rating Scale-17 items (HAMD-17) reduction rate was ≥50% after 2 weeks of antidepressant treatment. At baseline, the Illumina HiSeq Platform was used to detect the methylation of 74 CpG sites of the <i>P11</i> gene in peripheral blood samples. Resting-state functional magnetic resonance imaging (rs-fMRI) scan detected the amplitude of low-frequency fluctuations (ALFF), regional homogeneity (ReHo), and functional connectivity (FC) in 116 brain regions. The least absolute shrinkage and selection operator analysis method was used to perform feature reduction and feature selection. Four typical machine learning methods were used to establish support vector machine (SVM), random forest (RF), Naïve Bayes (NB), and logistic regression (LR) prediction models based on different combinations of functional activity of the brain, <i>P11</i> gene DNA methylation and clinical/demographic features after screening.</p><p><strong>Results: </strong>The SVM model based on ALFF, ReHo, FC, <i>P11</i> methylation, and clinical/demographic features showed the best performance, with 95.92% predictive accuracy and 0.9967 area under the receiver operating characteristic curve, which was better than RF, NB, and LR models.</p><p><strong>Conclusion: </strong>The multidimensional data features combining rs-fMRI, DNA methylation, and clinical/demographic features can predict the early antidepressant efficacy in MDD.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924577/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/07067437231210787\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/07067437231210787","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

目的:建立基于脑静息状态功能活动和P11基因DNA甲基化多维数据的机器学习模型,预测抑郁症患者抗抑郁治疗的早期疗效。根据汉密尔顿抑郁量表17项(HAMD-17)在抗抑郁治疗2周后的降低率是否≥50%,将患者分为51名有反应者和47名无反应者。在基线时,使用Illumina HiSeq平台检测外周血样本中P11基因74个CpG位点的甲基化。静息状态功能性磁共振成像(rs-fMRI)扫描检测到116个大脑区域的低频波动幅度(ALFF)、区域同质性(ReHo)和功能连接性(FC)。使用最小绝对收缩和选择算子分析方法进行特征约简和特征选择。基于筛选后大脑功能活动、P11基因DNA甲基化和临床/人口统计学特征的不同组合,使用四种典型的机器学习方法建立支持向量机(SVM)、随机森林(RF)、朴素贝叶斯(NB)和逻辑回归(LR)预测模型。结果:基于ALFF、ReHo、FC、P11甲基化和临床/人口统计学特征的SVM模型表现出最好的性能,预测准确率为95.92%,受试者工作特征曲线下面积为0.9967,优于RF、NB和LR模型。结论:结合rs-fMRI、DNA甲基化和临床/人口统计学特征的多维数据特征可以预测MDD的早期抗抑郁疗效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of Early Antidepressant Efficacy in Patients with Major Depressive Disorder Based on Multidimensional Features of rs-fMRI and P11 Gene DNA Methylation: Prédiction de l'efficacité précoce d'un antidépresseur chez des patients souffrant du trouble dépressif majeur d'après les caractéristiques multidimensionnelles de la méthylation de l'ADN du gène P11 et de la IRMf-rs.

Objective: This study established a machine learning model based on the multidimensional data of resting-state functional activity of the brain and P11 gene DNA methylation to predict the early efficacy of antidepressant treatment in patients with major depressive disorder (MDD).

Methods: A total of 98 Han Chinese MDD were analysed in this study. Patients were divided into 51 responders and 47 nonresponders according to whether the Hamilton Depression Rating Scale-17 items (HAMD-17) reduction rate was ≥50% after 2 weeks of antidepressant treatment. At baseline, the Illumina HiSeq Platform was used to detect the methylation of 74 CpG sites of the P11 gene in peripheral blood samples. Resting-state functional magnetic resonance imaging (rs-fMRI) scan detected the amplitude of low-frequency fluctuations (ALFF), regional homogeneity (ReHo), and functional connectivity (FC) in 116 brain regions. The least absolute shrinkage and selection operator analysis method was used to perform feature reduction and feature selection. Four typical machine learning methods were used to establish support vector machine (SVM), random forest (RF), Naïve Bayes (NB), and logistic regression (LR) prediction models based on different combinations of functional activity of the brain, P11 gene DNA methylation and clinical/demographic features after screening.

Results: The SVM model based on ALFF, ReHo, FC, P11 methylation, and clinical/demographic features showed the best performance, with 95.92% predictive accuracy and 0.9967 area under the receiver operating characteristic curve, which was better than RF, NB, and LR models.

Conclusion: The multidimensional data features combining rs-fMRI, DNA methylation, and clinical/demographic features can predict the early antidepressant efficacy in MDD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信