在全膝关节置换术中同时评估胫股和髌股力学:一种实验和计算相结合的方法。

IF 1.7 4区 医学 Q4 BIOPHYSICS
Yashar A Behnam, Ahilan Anantha Krishnan, Hayden Wilson, Chadd W Clary
{"title":"在全膝关节置换术中同时评估胫股和髌股力学:一种实验和计算相结合的方法。","authors":"Yashar A Behnam, Ahilan Anantha Krishnan, Hayden Wilson, Chadd W Clary","doi":"10.1115/1.4063950","DOIUrl":null,"url":null,"abstract":"<p><p>Contemporary total knee arthroplasty (TKA) has not fully restored natural patellofemoral (P-F) mechanics across the patient population. Previous experimental simulations have been limited in their ability to create dynamic, unconstrained, muscle-driven P-F articulation while simultaneously controlling tibiofemoral (T-F) contact mechanics. The purpose of this study was to develop a novel experimental simulation and validate a corresponding finite element model to evaluate T-F and P-F mechanics. A commercially available wear simulator was retrofitted with custom fixturing to evaluate whole-knee TKA mechanics with varying patella heights during a simulated deep knee bend. A corresponding dynamic finite element model was developed to validate kinematic and kinetic predictions against experimental measurements. Patella alta reduced P-F reaction forces in early and midflexion, corresponding with an increase in T-F forces that indicated an increase in extensor mechanism efficiency. Due to reduced wrapping of the extensor mechanism in deeper flexion for the alta condition, peak P-F forces in flexion increased from 101% to 135% of the applied quadriceps load for the baja and alta conditions, respectively. Strong agreement was observed between the experiment and model predictions with root-mean-square errors (RMSE) for P-F kinematics ranging from 0.8 deg to 3.3 deg and 0.7 mm to 1.4 mm. RMSE for P-F forces ranged from 7.4 N to 53.6 N. By simultaneously controlling dynamic, physiological loading of the T-F and P-F joint, this novel experimental simulation and validated model will be a valuable tool for investigation of future TKA designs and surgical techniques.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous Evaluation of Tibiofemoral and Patellofemoral Mechanics in Total Knee Arthroplasty: A Combined Experimental and Computational Approach.\",\"authors\":\"Yashar A Behnam, Ahilan Anantha Krishnan, Hayden Wilson, Chadd W Clary\",\"doi\":\"10.1115/1.4063950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Contemporary total knee arthroplasty (TKA) has not fully restored natural patellofemoral (P-F) mechanics across the patient population. Previous experimental simulations have been limited in their ability to create dynamic, unconstrained, muscle-driven P-F articulation while simultaneously controlling tibiofemoral (T-F) contact mechanics. The purpose of this study was to develop a novel experimental simulation and validate a corresponding finite element model to evaluate T-F and P-F mechanics. A commercially available wear simulator was retrofitted with custom fixturing to evaluate whole-knee TKA mechanics with varying patella heights during a simulated deep knee bend. A corresponding dynamic finite element model was developed to validate kinematic and kinetic predictions against experimental measurements. Patella alta reduced P-F reaction forces in early and midflexion, corresponding with an increase in T-F forces that indicated an increase in extensor mechanism efficiency. Due to reduced wrapping of the extensor mechanism in deeper flexion for the alta condition, peak P-F forces in flexion increased from 101% to 135% of the applied quadriceps load for the baja and alta conditions, respectively. Strong agreement was observed between the experiment and model predictions with root-mean-square errors (RMSE) for P-F kinematics ranging from 0.8 deg to 3.3 deg and 0.7 mm to 1.4 mm. RMSE for P-F forces ranged from 7.4 N to 53.6 N. By simultaneously controlling dynamic, physiological loading of the T-F and P-F joint, this novel experimental simulation and validated model will be a valuable tool for investigation of future TKA designs and surgical techniques.</p>\",\"PeriodicalId\":54871,\"journal\":{\"name\":\"Journal of Biomechanical Engineering-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomechanical Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063950\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomechanical Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063950","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

当代全膝关节置换术(TKA)尚未完全恢复整个患者群体的自然P-F力学。先前的实验模拟在创建动态、无约束、肌肉驱动的P-F关节同时控制胫股(T-F)接触力学的能力方面受到限制。本研究的目的是开发和验证一种新的实验模拟和相应的有限元模型,以评估T-F和P-F力学。在模拟深膝关节弯曲过程中,对商用磨损模拟器进行定制夹具改造,以评估髌骨高度变化的全膝TKA力学性能。开发了相应的动态有限元模型,以根据实验测量验证运动学和动力学预测。高位髌骨在早期和中期屈曲时减少了P-F反作用力,相应地,T-F力的增加表明伸肌机构效率的增加。由于在alta条件下,伸肌机构在更深屈曲中的包裹减少,在baja和alta情况下,屈曲时的峰值P-F力分别从施加的股四头肌负荷的101%增加到135%。在实验和模型预测之间观察到强烈的一致性,P-F运动学的均方根误差(RMSE)在0.8&;amp#176;至3.3&;amp#176;P-F力的RMSE范围为7.4N至53.6N。这种新的实验模拟和验证模型将为TKA植入物的未来发展提供有用的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simultaneous Evaluation of Tibiofemoral and Patellofemoral Mechanics in Total Knee Arthroplasty: A Combined Experimental and Computational Approach.

Contemporary total knee arthroplasty (TKA) has not fully restored natural patellofemoral (P-F) mechanics across the patient population. Previous experimental simulations have been limited in their ability to create dynamic, unconstrained, muscle-driven P-F articulation while simultaneously controlling tibiofemoral (T-F) contact mechanics. The purpose of this study was to develop a novel experimental simulation and validate a corresponding finite element model to evaluate T-F and P-F mechanics. A commercially available wear simulator was retrofitted with custom fixturing to evaluate whole-knee TKA mechanics with varying patella heights during a simulated deep knee bend. A corresponding dynamic finite element model was developed to validate kinematic and kinetic predictions against experimental measurements. Patella alta reduced P-F reaction forces in early and midflexion, corresponding with an increase in T-F forces that indicated an increase in extensor mechanism efficiency. Due to reduced wrapping of the extensor mechanism in deeper flexion for the alta condition, peak P-F forces in flexion increased from 101% to 135% of the applied quadriceps load for the baja and alta conditions, respectively. Strong agreement was observed between the experiment and model predictions with root-mean-square errors (RMSE) for P-F kinematics ranging from 0.8 deg to 3.3 deg and 0.7 mm to 1.4 mm. RMSE for P-F forces ranged from 7.4 N to 53.6 N. By simultaneously controlling dynamic, physiological loading of the T-F and P-F joint, this novel experimental simulation and validated model will be a valuable tool for investigation of future TKA designs and surgical techniques.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
5.90%
发文量
169
审稿时长
4-8 weeks
期刊介绍: Artificial Organs and Prostheses; Bioinstrumentation and Measurements; Bioheat Transfer; Biomaterials; Biomechanics; Bioprocess Engineering; Cellular Mechanics; Design and Control of Biological Systems; Physiological Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信