农业中的纳米生物传感器和纳米制剂:可持续农业的新进展和挑战。

IF 3.4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Cristina Miguel-Rojas, Alejandro Pérez-de-Luque
{"title":"农业中的纳米生物传感器和纳米制剂:可持续农业的新进展和挑战。","authors":"Cristina Miguel-Rojas, Alejandro Pérez-de-Luque","doi":"10.1042/ETLS20230070","DOIUrl":null,"url":null,"abstract":"<p><p>In the current scenario of climate change, global agricultural systems are facing remarkable challenges in order to increase production, while reducing the negative environmental impact. Nano-enabled technologies have the potential to revolutionise farming practices by increasing the efficiency of inputs and minimising losses, as well as contributing to sustainable agriculture. Two promising applications of nanotechnology in agriculture are nanobiosensors and nanoformulations (NFs). Nanobiosensors can help detect biotic and abiotic stresses in plants before they affect plant production, while NFs can make agrochemicals, more efficient and less polluting. NFs are becoming new-age materials with a wide variety of nanoparticle-based formulations such as fertilisers, herbicides, insecticides, and fungicides. They facilitate the site-targeted controlled delivery of agrochemicals enhancing their efficiency and reducing dosages. Smart farming aims to monitor and detect parameters related to plant health and environmental conditions in order to help sustainable agriculture. Nanobiosensors can provide real-time analytical data, including detection of nutrient levels, metabolites, pesticides, presence of pathogens, soil moisture, and temperature, aiding in precision farming practices, and optimising resource usage. In this review, we summarise recent innovative uses of NFs and nanobiosensors in agriculture that may boost crop protection and production, as well as reducing the negative environmental impact of agricultural activities. However, successful implementation of these smart technologies would require two special considerations: (i) educating farmers about appropriate use of nanotechnology, (ii) conducting field trials to ensure effectiveness under real conditions.</p>","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10754331/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nanobiosensors and nanoformulations in agriculture: new advances and challenges for sustainable agriculture.\",\"authors\":\"Cristina Miguel-Rojas, Alejandro Pérez-de-Luque\",\"doi\":\"10.1042/ETLS20230070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the current scenario of climate change, global agricultural systems are facing remarkable challenges in order to increase production, while reducing the negative environmental impact. Nano-enabled technologies have the potential to revolutionise farming practices by increasing the efficiency of inputs and minimising losses, as well as contributing to sustainable agriculture. Two promising applications of nanotechnology in agriculture are nanobiosensors and nanoformulations (NFs). Nanobiosensors can help detect biotic and abiotic stresses in plants before they affect plant production, while NFs can make agrochemicals, more efficient and less polluting. NFs are becoming new-age materials with a wide variety of nanoparticle-based formulations such as fertilisers, herbicides, insecticides, and fungicides. They facilitate the site-targeted controlled delivery of agrochemicals enhancing their efficiency and reducing dosages. Smart farming aims to monitor and detect parameters related to plant health and environmental conditions in order to help sustainable agriculture. Nanobiosensors can provide real-time analytical data, including detection of nutrient levels, metabolites, pesticides, presence of pathogens, soil moisture, and temperature, aiding in precision farming practices, and optimising resource usage. In this review, we summarise recent innovative uses of NFs and nanobiosensors in agriculture that may boost crop protection and production, as well as reducing the negative environmental impact of agricultural activities. However, successful implementation of these smart technologies would require two special considerations: (i) educating farmers about appropriate use of nanotechnology, (ii) conducting field trials to ensure effectiveness under real conditions.</p>\",\"PeriodicalId\":46394,\"journal\":{\"name\":\"Emerging Topics in Life Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10754331/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emerging Topics in Life Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1042/ETLS20230070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Topics in Life Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1042/ETLS20230070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在当前气候变化的情况下,全球农业系统面临着显著的挑战,以提高产量,同时减少对环境的负面影响。纳米技术有可能通过提高投入效率、最大限度地减少损失以及促进可持续农业来彻底改变农业实践。纳米技术在农业中的两个有前景的应用是纳米生物传感器和纳米制剂。纳米生物传感器可以在植物的生物和非生物胁迫影响植物生产之前帮助检测它们,而纳米生物传感器则可以使农用化学品更高效、污染更少。NFs正成为一种新的时代材料,具有多种基于纳米颗粒的配方,如化肥、除草剂、杀虫剂和杀菌剂。它们促进了农用化学品的现场定向控制递送,提高了效率并减少了剂量。智能农业旨在监测和检测与植物健康和环境条件相关的参数,以帮助可持续农业。纳米生物传感器可以提供实时分析数据,包括检测营养水平、代谢物、杀虫剂、病原体的存在、土壤湿度和温度,有助于精准农业实践,并优化资源利用。在这篇综述中,我们总结了NFs和纳米生物传感器在农业中的最新创新应用,这些应用可能会促进作物保护和生产,并减少农业活动对环境的负面影响。然而,成功实施这些智能技术需要两个特殊考虑:(i)教育农民适当使用纳米技术,(ii)进行实地试验,以确保在实际条件下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanobiosensors and nanoformulations in agriculture: new advances and challenges for sustainable agriculture.

In the current scenario of climate change, global agricultural systems are facing remarkable challenges in order to increase production, while reducing the negative environmental impact. Nano-enabled technologies have the potential to revolutionise farming practices by increasing the efficiency of inputs and minimising losses, as well as contributing to sustainable agriculture. Two promising applications of nanotechnology in agriculture are nanobiosensors and nanoformulations (NFs). Nanobiosensors can help detect biotic and abiotic stresses in plants before they affect plant production, while NFs can make agrochemicals, more efficient and less polluting. NFs are becoming new-age materials with a wide variety of nanoparticle-based formulations such as fertilisers, herbicides, insecticides, and fungicides. They facilitate the site-targeted controlled delivery of agrochemicals enhancing their efficiency and reducing dosages. Smart farming aims to monitor and detect parameters related to plant health and environmental conditions in order to help sustainable agriculture. Nanobiosensors can provide real-time analytical data, including detection of nutrient levels, metabolites, pesticides, presence of pathogens, soil moisture, and temperature, aiding in precision farming practices, and optimising resource usage. In this review, we summarise recent innovative uses of NFs and nanobiosensors in agriculture that may boost crop protection and production, as well as reducing the negative environmental impact of agricultural activities. However, successful implementation of these smart technologies would require two special considerations: (i) educating farmers about appropriate use of nanotechnology, (ii) conducting field trials to ensure effectiveness under real conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
94
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信