多组学分析为黄桃皮类胡萝卜素生物合成的调控机制提供了新的见解。

IF 10.6 Q1 HORTICULTURE
Jiarui Zheng, Xiaoyan Yang, Jiabao Ye, Dongxue Su, Lina Wang, Yongling Liao, Weiwei Zhang, Qijian Wang, Qiangwen Chen, Feng Xu
{"title":"多组学分析为黄桃皮类胡萝卜素生物合成的调控机制提供了新的见解。","authors":"Jiarui Zheng,&nbsp;Xiaoyan Yang,&nbsp;Jiabao Ye,&nbsp;Dongxue Su,&nbsp;Lina Wang,&nbsp;Yongling Liao,&nbsp;Weiwei Zhang,&nbsp;Qijian Wang,&nbsp;Qiangwen Chen,&nbsp;Feng Xu","doi":"10.1186/s43897-023-00070-3","DOIUrl":null,"url":null,"abstract":"<p><p>Carotenoids, as natural tetraterpenes, play a pivotal role in the yellow coloration of peaches and contribute to human dietary health. Despite a relatively clear understanding of the carotenoid biosynthesis pathway, the regulatory mechanism of miRNAs involved in carotenoid synthesis in yellow peaches remain poorly elucidated. This study investigated a total of 14 carotenoids and 40 xanthophyll lipids, including six differentially accumulated carotenoids: violaxanthin, neoxanthin, lutein, zeaxanthin, cryptoxanthin, and (E/Z)-phytoene. An integrated analysis of RNA-seq, miRNA-seq and degradome sequencing revealed that miRNAs could modulate structural genes such as PSY2, CRTISO, ZDS1, CHYB, VDE, ZEP, NCED1, NCED3 and the transcription factors NAC, ARF, WRKY, MYB, and bZIP, thereby participating in carotenoid biosynthesis and metabolism. The authenticity of miRNAs and target gene was corroborated through quantitative real-time PCR. Moreover, through weighted gene coexpression network analysis and a phylogenetic evolutionary study, coexpressed genes and MYB transcription factors potentially implicated in carotenoid synthesis were identified. The results of transient expression experiments indicated that mdm-miR858 inhibited the expression of PpMYB9 through targeted cleavage. Building upon these findings, a regulatory network governing miRNA-mediated carotenoid synthesis was proposed. In summary, this study comprehensively identified miRNAs engaged in carotenoid biosynthesis and their putative target genes, thus enhancing the understanding of carotenoid accumulation and regulatory mechanism in yellow peach peel and expanding the gene regulatory network of carotenoid synthesis.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"3 1","pages":"23"},"PeriodicalIF":10.6000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10623742/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multiomics analysis provides new insights into the regulatory mechanism of carotenoid biosynthesis in yellow peach peel.\",\"authors\":\"Jiarui Zheng,&nbsp;Xiaoyan Yang,&nbsp;Jiabao Ye,&nbsp;Dongxue Su,&nbsp;Lina Wang,&nbsp;Yongling Liao,&nbsp;Weiwei Zhang,&nbsp;Qijian Wang,&nbsp;Qiangwen Chen,&nbsp;Feng Xu\",\"doi\":\"10.1186/s43897-023-00070-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Carotenoids, as natural tetraterpenes, play a pivotal role in the yellow coloration of peaches and contribute to human dietary health. Despite a relatively clear understanding of the carotenoid biosynthesis pathway, the regulatory mechanism of miRNAs involved in carotenoid synthesis in yellow peaches remain poorly elucidated. This study investigated a total of 14 carotenoids and 40 xanthophyll lipids, including six differentially accumulated carotenoids: violaxanthin, neoxanthin, lutein, zeaxanthin, cryptoxanthin, and (E/Z)-phytoene. An integrated analysis of RNA-seq, miRNA-seq and degradome sequencing revealed that miRNAs could modulate structural genes such as PSY2, CRTISO, ZDS1, CHYB, VDE, ZEP, NCED1, NCED3 and the transcription factors NAC, ARF, WRKY, MYB, and bZIP, thereby participating in carotenoid biosynthesis and metabolism. The authenticity of miRNAs and target gene was corroborated through quantitative real-time PCR. Moreover, through weighted gene coexpression network analysis and a phylogenetic evolutionary study, coexpressed genes and MYB transcription factors potentially implicated in carotenoid synthesis were identified. The results of transient expression experiments indicated that mdm-miR858 inhibited the expression of PpMYB9 through targeted cleavage. Building upon these findings, a regulatory network governing miRNA-mediated carotenoid synthesis was proposed. In summary, this study comprehensively identified miRNAs engaged in carotenoid biosynthesis and their putative target genes, thus enhancing the understanding of carotenoid accumulation and regulatory mechanism in yellow peach peel and expanding the gene regulatory network of carotenoid synthesis.</p>\",\"PeriodicalId\":29970,\"journal\":{\"name\":\"Molecular Horticulture\",\"volume\":\"3 1\",\"pages\":\"23\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10623742/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Horticulture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s43897-023-00070-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Horticulture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43897-023-00070-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0

摘要

类胡萝卜素是一种天然的四萜,在桃子的黄色中起着关键作用,有助于人类的饮食健康。尽管人们对类胡萝卜素生物合成途径有着相对清晰的了解,但参与黄桃类胡萝卜素合成的miRNA的调控机制仍知之甚少。本研究共研究了14种类胡萝卜素和40种叶黄素脂质,其中包括6种不同积累的类胡萝卜素:紫黄质、新黄质、叶黄素、玉米黄质、隐黄质和(E/Z)-八氢番茄红素。RNA-seq、miRNA-seq和降解组测序的综合分析表明,miRNAs可以调节结构基因如PSY2、CRTISO、ZDS1、CHYB、VDE、ZEP、NCED1、NCED3以及转录因子NAC、ARF、WRKY、MYB和bZIP,从而参与类胡萝卜素的生物合成和代谢。通过实时定量PCR证实了miRNA和靶基因的真实性。此外,通过加权基因共表达网络分析和系统发育进化研究,鉴定了可能与类胡萝卜素合成有关的共表达基因和MYB转录因子。瞬时表达实验结果表明,mdm-miR858通过靶向切割抑制PpMYB9的表达。基于这些发现,提出了一个调控miRNA介导的类胡萝卜素合成的调控网络。总之,本研究全面鉴定了参与类胡萝卜素生物合成的miRNA及其推定的靶基因,从而加深了对类胡萝卜素在黄桃皮中积累和调控机制的理解,拓展了类胡萝卜素合成的基因调控网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multiomics analysis provides new insights into the regulatory mechanism of carotenoid biosynthesis in yellow peach peel.

Multiomics analysis provides new insights into the regulatory mechanism of carotenoid biosynthesis in yellow peach peel.

Multiomics analysis provides new insights into the regulatory mechanism of carotenoid biosynthesis in yellow peach peel.

Multiomics analysis provides new insights into the regulatory mechanism of carotenoid biosynthesis in yellow peach peel.

Carotenoids, as natural tetraterpenes, play a pivotal role in the yellow coloration of peaches and contribute to human dietary health. Despite a relatively clear understanding of the carotenoid biosynthesis pathway, the regulatory mechanism of miRNAs involved in carotenoid synthesis in yellow peaches remain poorly elucidated. This study investigated a total of 14 carotenoids and 40 xanthophyll lipids, including six differentially accumulated carotenoids: violaxanthin, neoxanthin, lutein, zeaxanthin, cryptoxanthin, and (E/Z)-phytoene. An integrated analysis of RNA-seq, miRNA-seq and degradome sequencing revealed that miRNAs could modulate structural genes such as PSY2, CRTISO, ZDS1, CHYB, VDE, ZEP, NCED1, NCED3 and the transcription factors NAC, ARF, WRKY, MYB, and bZIP, thereby participating in carotenoid biosynthesis and metabolism. The authenticity of miRNAs and target gene was corroborated through quantitative real-time PCR. Moreover, through weighted gene coexpression network analysis and a phylogenetic evolutionary study, coexpressed genes and MYB transcription factors potentially implicated in carotenoid synthesis were identified. The results of transient expression experiments indicated that mdm-miR858 inhibited the expression of PpMYB9 through targeted cleavage. Building upon these findings, a regulatory network governing miRNA-mediated carotenoid synthesis was proposed. In summary, this study comprehensively identified miRNAs engaged in carotenoid biosynthesis and their putative target genes, thus enhancing the understanding of carotenoid accumulation and regulatory mechanism in yellow peach peel and expanding the gene regulatory network of carotenoid synthesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Horticulture
Molecular Horticulture horticultural research-
CiteScore
8.00
自引率
0.00%
发文量
24
审稿时长
12 weeks
期刊介绍: Aims Molecular Horticulture aims to publish research and review articles that significantly advance our knowledge in understanding how the horticultural crops or their parts operate mechanistically. Articles should have profound impacts not only in terms of high citation number or the like, but more importantly on the direction of the horticultural research field. Scope Molecular Horticulture publishes original Research Articles, Letters, and Reviews on novel discoveries on the following, but not limited to, aspects of horticultural plants (including medicinal plants): ▪ Developmental and evolutionary biology ▪ Physiology, biochemistry and cell biology ▪ Plant-microbe and plant-environment interactions ▪ Genetics and epigenetics ▪ Molecular breeding and biotechnology ▪ Secondary metabolism and synthetic biology ▪ Multi-omics dealing with data sets of genome, transcriptome, proteome, metabolome, epigenome and/or microbiome. The journal also welcomes research articles using model plants that reveal mechanisms and/or principles readily applicable to horticultural plants, translational research articles involving application of basic knowledge (including those of model plants) to the horticultural crops, novel Methods and Resources of broad interest. In addition, the journal publishes Editorial, News and View, and Commentary and Perspective on current, significant events and topics in global horticultural fields with international interests.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信