{"title":"通过mtrC基因克隆和硝酸盐还原途径破坏优化重组阿塞拜疆谢瓦内拉细菌的金属生物还原过程。","authors":"Elham Rastkhah, Faezeh Fatemi, Parvaneh Maghami","doi":"10.1007/s12033-023-00920-x","DOIUrl":null,"url":null,"abstract":"<p><p>Environmental pollution is growing every day in terms of the increase in population, industrialization, and urbanization. Shewanella azerbaijanica is introduced as a highly potent bacterium in metal bioremediation. The mtrC gene was selected as a cloning target to improve electron flux chains in the EET (extracellular electron transfer) pathway. Using the SDM (site-directed mutagenesis) technique, the unique gene assembly featured the mtrC gene sandwiched between two napD/B genes to disrupt the nitrate reduction pathway, which serves as the primary metal reduction competitor. Shew-mtrC gene construction was transferred to expression plasmid pET28a (+) in the expression host bacteria (E. coli BL21 and S. azerbaijanica), in pUC57, cloning plasmid, which was transferred to the cloning host bacteria E. coli Top10 and S. azerbaijanica. All cloning procedures (i.e., synthesis, insertion, transformation, cloning, and protein expression) were verified and confirmed by precise tests. ATR-FTIR analysis, CD, western blotting, affinity chromatography, SDS-PAGE, and other techniques were used to confirm the expression and structure of the MtrC protein. The genome sequence and primers were designed according to the submitted Shewanella oneidensis MR-1 genome, the most similar bacteria to this native species. The performance of recombinant S. azerbaijanica bacterium in metal bioremediation, as sustainable strategy, has to be verified by more research.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"3150-3163"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing the Metal Bioreduction Process in Recombinant Shewanella azerbaijanica Bacteria: A Novel Approach via mtrC Gene Cloning and Nitrate-Reducing Pathway Destruction.\",\"authors\":\"Elham Rastkhah, Faezeh Fatemi, Parvaneh Maghami\",\"doi\":\"10.1007/s12033-023-00920-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Environmental pollution is growing every day in terms of the increase in population, industrialization, and urbanization. Shewanella azerbaijanica is introduced as a highly potent bacterium in metal bioremediation. The mtrC gene was selected as a cloning target to improve electron flux chains in the EET (extracellular electron transfer) pathway. Using the SDM (site-directed mutagenesis) technique, the unique gene assembly featured the mtrC gene sandwiched between two napD/B genes to disrupt the nitrate reduction pathway, which serves as the primary metal reduction competitor. Shew-mtrC gene construction was transferred to expression plasmid pET28a (+) in the expression host bacteria (E. coli BL21 and S. azerbaijanica), in pUC57, cloning plasmid, which was transferred to the cloning host bacteria E. coli Top10 and S. azerbaijanica. All cloning procedures (i.e., synthesis, insertion, transformation, cloning, and protein expression) were verified and confirmed by precise tests. ATR-FTIR analysis, CD, western blotting, affinity chromatography, SDS-PAGE, and other techniques were used to confirm the expression and structure of the MtrC protein. The genome sequence and primers were designed according to the submitted Shewanella oneidensis MR-1 genome, the most similar bacteria to this native species. The performance of recombinant S. azerbaijanica bacterium in metal bioremediation, as sustainable strategy, has to be verified by more research.</p>\",\"PeriodicalId\":18865,\"journal\":{\"name\":\"Molecular Biotechnology\",\"volume\":\" \",\"pages\":\"3150-3163\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Biotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12033-023-00920-x\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-023-00920-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Optimizing the Metal Bioreduction Process in Recombinant Shewanella azerbaijanica Bacteria: A Novel Approach via mtrC Gene Cloning and Nitrate-Reducing Pathway Destruction.
Environmental pollution is growing every day in terms of the increase in population, industrialization, and urbanization. Shewanella azerbaijanica is introduced as a highly potent bacterium in metal bioremediation. The mtrC gene was selected as a cloning target to improve electron flux chains in the EET (extracellular electron transfer) pathway. Using the SDM (site-directed mutagenesis) technique, the unique gene assembly featured the mtrC gene sandwiched between two napD/B genes to disrupt the nitrate reduction pathway, which serves as the primary metal reduction competitor. Shew-mtrC gene construction was transferred to expression plasmid pET28a (+) in the expression host bacteria (E. coli BL21 and S. azerbaijanica), in pUC57, cloning plasmid, which was transferred to the cloning host bacteria E. coli Top10 and S. azerbaijanica. All cloning procedures (i.e., synthesis, insertion, transformation, cloning, and protein expression) were verified and confirmed by precise tests. ATR-FTIR analysis, CD, western blotting, affinity chromatography, SDS-PAGE, and other techniques were used to confirm the expression and structure of the MtrC protein. The genome sequence and primers were designed according to the submitted Shewanella oneidensis MR-1 genome, the most similar bacteria to this native species. The performance of recombinant S. azerbaijanica bacterium in metal bioremediation, as sustainable strategy, has to be verified by more research.
期刊介绍:
Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.