{"title":"谱系追踪确定内皮细胞在发育过程中对心脏瓣膜间充质的动态贡献。","authors":"Xiaojie Yang, Furong Lu","doi":"10.1369/00221554231207434","DOIUrl":null,"url":null,"abstract":"<p><p>Heart valve disease is an important cause of morbidity and mortality among cardiac patients worldwide. However, the pathogenesis of heart valve disease is not clear, and a growing body of evidence hints at the importance of the genetic basis and developmental origins of heart valve disease. Therefore, understanding the developmental mechanisms that underlie the formation of heart valves has important implications for the diagnosis, prevention, and treatment of congenital heart disease. Endothelial to mesenchymal transition is a key step in initiating cardiac valve development. The dynamic changes in the relative localization and proportion of different cell sources in the heart valve mesenchymal population are still not fully understood. Here, we used the <i>Cdh5-CreER;R26R-tdTomato</i> mouse line to trace endocardial cushion-derived endothelial cells to explore the dynamic contribution of these cells to each layer of the valve during valve development. This is beneficial for elaborating on the role of endocardial cells in the process of valve remodeling from a precise angle.</p>","PeriodicalId":16079,"journal":{"name":"Journal of Histochemistry & Cytochemistry","volume":" ","pages":"675-687"},"PeriodicalIF":1.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10691411/pdf/","citationCount":"0","resultStr":"{\"title\":\"Lineage Tracing Identifies Dynamic Contribution of Endothelial Cells to Cardiac Valve Mesenchyme During Development.\",\"authors\":\"Xiaojie Yang, Furong Lu\",\"doi\":\"10.1369/00221554231207434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heart valve disease is an important cause of morbidity and mortality among cardiac patients worldwide. However, the pathogenesis of heart valve disease is not clear, and a growing body of evidence hints at the importance of the genetic basis and developmental origins of heart valve disease. Therefore, understanding the developmental mechanisms that underlie the formation of heart valves has important implications for the diagnosis, prevention, and treatment of congenital heart disease. Endothelial to mesenchymal transition is a key step in initiating cardiac valve development. The dynamic changes in the relative localization and proportion of different cell sources in the heart valve mesenchymal population are still not fully understood. Here, we used the <i>Cdh5-CreER;R26R-tdTomato</i> mouse line to trace endocardial cushion-derived endothelial cells to explore the dynamic contribution of these cells to each layer of the valve during valve development. This is beneficial for elaborating on the role of endocardial cells in the process of valve remodeling from a precise angle.</p>\",\"PeriodicalId\":16079,\"journal\":{\"name\":\"Journal of Histochemistry & Cytochemistry\",\"volume\":\" \",\"pages\":\"675-687\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10691411/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Histochemistry & Cytochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1369/00221554231207434\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Histochemistry & Cytochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1369/00221554231207434","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/1 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Lineage Tracing Identifies Dynamic Contribution of Endothelial Cells to Cardiac Valve Mesenchyme During Development.
Heart valve disease is an important cause of morbidity and mortality among cardiac patients worldwide. However, the pathogenesis of heart valve disease is not clear, and a growing body of evidence hints at the importance of the genetic basis and developmental origins of heart valve disease. Therefore, understanding the developmental mechanisms that underlie the formation of heart valves has important implications for the diagnosis, prevention, and treatment of congenital heart disease. Endothelial to mesenchymal transition is a key step in initiating cardiac valve development. The dynamic changes in the relative localization and proportion of different cell sources in the heart valve mesenchymal population are still not fully understood. Here, we used the Cdh5-CreER;R26R-tdTomato mouse line to trace endocardial cushion-derived endothelial cells to explore the dynamic contribution of these cells to each layer of the valve during valve development. This is beneficial for elaborating on the role of endocardial cells in the process of valve remodeling from a precise angle.
期刊介绍:
Journal of Histochemistry & Cytochemistry (JHC) has been a pre-eminent cell biology journal for over 50 years. Published monthly, JHC offers primary research articles, timely reviews, editorials, and perspectives on the structure and function of cells, tissues, and organs, as well as mechanisms of development, differentiation, and disease. JHC also publishes new developments in microscopy and imaging, especially where imaging techniques complement current genetic, molecular and biochemical investigations of cell and tissue function. JHC offers generous space for articles and recognizing the value of images that reveal molecular, cellular and tissue organization, offers free color to all authors.