腹神经节的兴奋影响蜜蜂间接飞行肌的电生理活动。

IF 2.9 1区 农林科学 Q1 ENTOMOLOGY
Insect Science Pub Date : 2024-08-01 Epub Date: 2023-10-31 DOI:10.1111/1744-7917.13290
Haojia Ding, Shaoze Yan
{"title":"腹神经节的兴奋影响蜜蜂间接飞行肌的电生理活动。","authors":"Haojia Ding, Shaoze Yan","doi":"10.1111/1744-7917.13290","DOIUrl":null,"url":null,"abstract":"<p><p>Our understanding of the nervous tissues that affect the wing flapping of insects mainly focuses on the brain, but wing flapping is a rhythmic movement related to the central pattern generator in the ventral nerve cord. To verify whether the neural activity of the abdominal ganglion of the honeybee (Apis mellifera) affects the flapping-wing flight, we profiled the response characteristics of indirect flight muscles to abdominal ganglion excitation. Strikingly, a change in the neural activity of ganglion 3 or ganglion 4 has a stronger effect on the electrophysiological activity of indirect flight muscles than that of ganglion 5. The electrophysiological activity of vertical indirect flight muscles is affected more by the change in neural activity of the abdominal ganglion than that of lateral indirect flight muscles. Moreover, the change in neural activity of the abdominal ganglion mainly causes the change in the muscular activity of indirect wing muscles, but the activity patterns change relatively little and there is little change in the complicated details. This work improves our understanding of the neuroregulatory mechanisms associated with the flapping-wing flight of honeybees.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Excitation of the abdominal ganglion affects the electrophysiological activity of indirect flight muscles of the honeybee Apis mellifera.\",\"authors\":\"Haojia Ding, Shaoze Yan\",\"doi\":\"10.1111/1744-7917.13290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Our understanding of the nervous tissues that affect the wing flapping of insects mainly focuses on the brain, but wing flapping is a rhythmic movement related to the central pattern generator in the ventral nerve cord. To verify whether the neural activity of the abdominal ganglion of the honeybee (Apis mellifera) affects the flapping-wing flight, we profiled the response characteristics of indirect flight muscles to abdominal ganglion excitation. Strikingly, a change in the neural activity of ganglion 3 or ganglion 4 has a stronger effect on the electrophysiological activity of indirect flight muscles than that of ganglion 5. The electrophysiological activity of vertical indirect flight muscles is affected more by the change in neural activity of the abdominal ganglion than that of lateral indirect flight muscles. Moreover, the change in neural activity of the abdominal ganglion mainly causes the change in the muscular activity of indirect wing muscles, but the activity patterns change relatively little and there is little change in the complicated details. This work improves our understanding of the neuroregulatory mechanisms associated with the flapping-wing flight of honeybees.</p>\",\"PeriodicalId\":13618,\"journal\":{\"name\":\"Insect Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/1744-7917.13290\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1744-7917.13290","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们对影响昆虫拍打翅膀的神经组织的理解主要集中在大脑上,但拍打翅膀是一种有节奏的运动,与腹神经索中的中央模式发生器有关。为了验证蜜蜂腹神经节的神经活动是否影响扑翼飞行,我们描述了间接飞行肌肉对腹神经节兴奋的反应特征。引人注目的是,3号神经节或4号神经节的神经活动的变化对间接飞行肌的电生理活动的影响比5号神经节更强。垂直间接飞行肌的电生理活动比横向间接飞行肌受腹神经节神经活动变化的影响更大。此外,腹神经节神经活动的变化主要引起间接翼肌肌肉活动的变化,但活动模式变化相对较小,复杂细节变化较小。这项工作提高了我们对蜜蜂扑翼飞行相关神经调节机制的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Excitation of the abdominal ganglion affects the electrophysiological activity of indirect flight muscles of the honeybee Apis mellifera.

Excitation of the abdominal ganglion affects the electrophysiological activity of indirect flight muscles of the honeybee Apis mellifera.

Our understanding of the nervous tissues that affect the wing flapping of insects mainly focuses on the brain, but wing flapping is a rhythmic movement related to the central pattern generator in the ventral nerve cord. To verify whether the neural activity of the abdominal ganglion of the honeybee (Apis mellifera) affects the flapping-wing flight, we profiled the response characteristics of indirect flight muscles to abdominal ganglion excitation. Strikingly, a change in the neural activity of ganglion 3 or ganglion 4 has a stronger effect on the electrophysiological activity of indirect flight muscles than that of ganglion 5. The electrophysiological activity of vertical indirect flight muscles is affected more by the change in neural activity of the abdominal ganglion than that of lateral indirect flight muscles. Moreover, the change in neural activity of the abdominal ganglion mainly causes the change in the muscular activity of indirect wing muscles, but the activity patterns change relatively little and there is little change in the complicated details. This work improves our understanding of the neuroregulatory mechanisms associated with the flapping-wing flight of honeybees.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Insect Science
Insect Science 生物-昆虫学
CiteScore
7.80
自引率
5.00%
发文量
1379
审稿时长
6.0 months
期刊介绍: Insect Science is an English-language journal, which publishes original research articles dealing with all fields of research in into insects and other terrestrial arthropods. Papers in any of the following fields will be considered: ecology, behavior, biogeography, physiology, biochemistry, sociobiology, phylogeny, pest management, and exotic incursions. The emphasis of the journal is on the adaptation and evolutionary biology of insects from the molecular to the ecosystem level. Reviews, mini reviews and letters to the editor, book reviews, and information about academic activities of the society are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信