Shu Li, Kelan Zhang, Liu Yang, Jia Wu, Neha Bhargava, Yinghua Li, Fei Gao
{"title":"中国广州女性中人乳头瘤病毒基因型的分布模式。","authors":"Shu Li, Kelan Zhang, Liu Yang, Jia Wu, Neha Bhargava, Yinghua Li, Fei Gao","doi":"10.1186/s13027-023-00541-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cervical cancer is associated with high-risk human papillomavirus (HR-HPV) infection in the world. We aimed to evaluate the status of HPV infection among women in Guangzhou, China.</p><p><strong>Methods: </strong>The study recruited 28,643 female patients from the Guangzhou Women and Children's Medical Center for HPV genotype testing between 2019 and 2021.</p><p><strong>Results: </strong>5668 patients were infected with HPV, resulting in an overall infection prevalence of 19.78%. The prevalence of HR-HPV was recorded at 13.94% (both single-infections and multi-infections), probably high-risk HPV/possibly carcinogenic (pHR-HPV) as 3.51%; and low-risk HPV (LR-HPV) as 3.56%. The most common HR-HPV genotype detected was HPV-52 with an infection rate of 4.99%, followed by HPV 58 (2.18%), 16 (2.12%), 51 (1.61%), 39 (1.19%), 56 (1.09%), 59 (0.85%), 18 (0.72%), 33 (0.61%), 31 (0.53%), 35 (0.20%), 45 (0.17%). Among LR-HPV genotypes, HPV-42 was the most common (1.08%), followed by 44 (0.77%), 81 (0.68%), 6 (0.48%), 43 (0.40%), 11 (0.23%) and 83 (0.07%). The prevalence of infection among different genotypes in pHR-HPV was: 68 (1.29%), 53 (1.21%), 66 (0.77%), 82 (0.25%), 73 (0.16%). Additionally, the prevalence of single genotype HPV infection exceeded that of multiple HPV infections except HPV-59.</p><p><strong>Conclusion: </strong>Our findings imply that HPV genotype infections in Guangzhou demonstrate a regional and age-related distribution. Therefore, these data can provide a substantial foundation for further epidemiologic analysis to control and prevent HPV infections in Guangzhou.</p>","PeriodicalId":13568,"journal":{"name":"Infectious Agents and Cancer","volume":"18 1","pages":"67"},"PeriodicalIF":3.1000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10617049/pdf/","citationCount":"0","resultStr":"{\"title\":\"Distribution patterns of human papillomavirus genotypes among women in Guangzhou, China.\",\"authors\":\"Shu Li, Kelan Zhang, Liu Yang, Jia Wu, Neha Bhargava, Yinghua Li, Fei Gao\",\"doi\":\"10.1186/s13027-023-00541-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Cervical cancer is associated with high-risk human papillomavirus (HR-HPV) infection in the world. We aimed to evaluate the status of HPV infection among women in Guangzhou, China.</p><p><strong>Methods: </strong>The study recruited 28,643 female patients from the Guangzhou Women and Children's Medical Center for HPV genotype testing between 2019 and 2021.</p><p><strong>Results: </strong>5668 patients were infected with HPV, resulting in an overall infection prevalence of 19.78%. The prevalence of HR-HPV was recorded at 13.94% (both single-infections and multi-infections), probably high-risk HPV/possibly carcinogenic (pHR-HPV) as 3.51%; and low-risk HPV (LR-HPV) as 3.56%. The most common HR-HPV genotype detected was HPV-52 with an infection rate of 4.99%, followed by HPV 58 (2.18%), 16 (2.12%), 51 (1.61%), 39 (1.19%), 56 (1.09%), 59 (0.85%), 18 (0.72%), 33 (0.61%), 31 (0.53%), 35 (0.20%), 45 (0.17%). Among LR-HPV genotypes, HPV-42 was the most common (1.08%), followed by 44 (0.77%), 81 (0.68%), 6 (0.48%), 43 (0.40%), 11 (0.23%) and 83 (0.07%). The prevalence of infection among different genotypes in pHR-HPV was: 68 (1.29%), 53 (1.21%), 66 (0.77%), 82 (0.25%), 73 (0.16%). Additionally, the prevalence of single genotype HPV infection exceeded that of multiple HPV infections except HPV-59.</p><p><strong>Conclusion: </strong>Our findings imply that HPV genotype infections in Guangzhou demonstrate a regional and age-related distribution. Therefore, these data can provide a substantial foundation for further epidemiologic analysis to control and prevent HPV infections in Guangzhou.</p>\",\"PeriodicalId\":13568,\"journal\":{\"name\":\"Infectious Agents and Cancer\",\"volume\":\"18 1\",\"pages\":\"67\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10617049/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infectious Agents and Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13027-023-00541-8\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infectious Agents and Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13027-023-00541-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Distribution patterns of human papillomavirus genotypes among women in Guangzhou, China.
Background: Cervical cancer is associated with high-risk human papillomavirus (HR-HPV) infection in the world. We aimed to evaluate the status of HPV infection among women in Guangzhou, China.
Methods: The study recruited 28,643 female patients from the Guangzhou Women and Children's Medical Center for HPV genotype testing between 2019 and 2021.
Results: 5668 patients were infected with HPV, resulting in an overall infection prevalence of 19.78%. The prevalence of HR-HPV was recorded at 13.94% (both single-infections and multi-infections), probably high-risk HPV/possibly carcinogenic (pHR-HPV) as 3.51%; and low-risk HPV (LR-HPV) as 3.56%. The most common HR-HPV genotype detected was HPV-52 with an infection rate of 4.99%, followed by HPV 58 (2.18%), 16 (2.12%), 51 (1.61%), 39 (1.19%), 56 (1.09%), 59 (0.85%), 18 (0.72%), 33 (0.61%), 31 (0.53%), 35 (0.20%), 45 (0.17%). Among LR-HPV genotypes, HPV-42 was the most common (1.08%), followed by 44 (0.77%), 81 (0.68%), 6 (0.48%), 43 (0.40%), 11 (0.23%) and 83 (0.07%). The prevalence of infection among different genotypes in pHR-HPV was: 68 (1.29%), 53 (1.21%), 66 (0.77%), 82 (0.25%), 73 (0.16%). Additionally, the prevalence of single genotype HPV infection exceeded that of multiple HPV infections except HPV-59.
Conclusion: Our findings imply that HPV genotype infections in Guangzhou demonstrate a regional and age-related distribution. Therefore, these data can provide a substantial foundation for further epidemiologic analysis to control and prevent HPV infections in Guangzhou.
期刊介绍:
Infectious Agents and Cancer is an open access, peer-reviewed online journal that encompasses all aspects of basic, clinical, epidemiological and translational research providing an insight into the association between chronic infections and cancer.
The journal welcomes submissions in the pathogen-related cancer areas and other related topics, in particular:
• HPV and anogenital cancers, as well as head and neck cancers;
• EBV and Burkitt lymphoma;
• HCV/HBV and hepatocellular carcinoma as well as lymphoproliferative diseases;
• HHV8 and Kaposi sarcoma;
• HTLV and leukemia;
• Cancers in Low- and Middle-income countries.
The link between infection and cancer has become well established over the past 50 years, and infection-associated cancer contribute up to 16% of cancers in developed countries and 33% in less developed countries.
Preventive vaccines have been developed for only two cancer-causing viruses, highlighting both the opportunity to prevent infection-associated cancers by vaccination and the gaps that remain before vaccines can be developed for other cancer-causing agents. These gaps are due to incomplete understanding of the basic biology, natural history, epidemiology of many of the pathogens that cause cancer, the mechanisms they exploit to cause cancer, and how to interrupt progression to cancer in human populations. Early diagnosis or identification of lesions at high risk of progression represent the current most critical research area of the field supported by recent advances in genomics and proteomics technologies.